\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Bifurcation analysis of a predator-prey model with strong Allee effect and Beddington-DeAngelis functional response

  • *Corresponding author: Liping Yu

    *Corresponding author: Liping Yu 
Abstract Full Text(HTML) Figure(11) Related Papers Cited by
  • This manuscript examines the dynamics of a predator-prey model of the Beddington-DeAngelis type with strong Allee effect on prey growth function. Conditions for the existence and equilibria types are established. By taking Allee effect, predation rate of the prey and growth rate of the predator as bifurcation parameters, different potential bifurcations are explored, including codimension one bifurcations: fold bifurcation, transcritical bifurcation, Hopf bifurcation, and codimension two bifurcations: cusp bifurcation, Bogdanov-Takens bifurcation, and Bautin bifurcation. In addition, to confirm the dynamic behavior of the system, bifurcation diagrams are given in different parameter spaces and phase portraits are also presented to provide corresponding interpretation. The findings indicate that the dynamics of our system is much richer than the system with no strong Allee effect.

    Mathematics Subject Classification: Primary: 34C23, 65P30, 92B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Real roots of the polynomial $ p(x) $. (A) Three positive real roots $ x_1, x_2 $ and $ x_3 $. (B) and (C) Two positive real roots $ x_- $ and $ x_+ $. (D) Unique positive real root $ x_- = x_+ $

    Figure 2.  Number of interior equilibria. (A) Three equilibria at $ M = 0.05, \alpha_1 = 0.1, \alpha_2 = 0.4, A = 0.3, \beta = 0.3, \gamma = 0.1 $. (B) Two equilibria at $ M = 0.1, \alpha_1 = 0.1, \alpha_2 = 0.4, A = 0.3, \beta = 0.3, \gamma = 0.1 $. (C) Unique equilibrium at $ M = 0.02, \alpha_1 = 0.174293, \alpha_2 = 0.4, A = 0.3, \beta = 0.4, \gamma = 0.1 $

    Figure 3.  Phase portrait of three interior equilibria $ E_i^* $ ($ i = 1, 2, 3 $) and three boundary equilibria $ E_j $ ($ j = 0, 1, 2 $) at $ M = 0.07, \alpha_1 = 0.1, \alpha_2 = 0.4, A = 0.3, \beta = 0.3, \gamma = 0.1 $. $ E_3^* $ is stable hyperbolic focus, $ E_2^* $, $ E_2 $ and $ E_1 $ are saddles nodes, $ E_1^* $ is an unstable node and $ E_0 $ is stable node

    Figure 4.  (A) Transcritical bifurcation around $ E_1(M, 0) $ and $ E_2( 1, 0) $, and saddle-node bifurcation around $ E^*(0.568240, 0.881665) $ with respect to $ \alpha_2 $ under condition (19). (B) Hopf bifurcation around $ E^*(0.842105, 0.0701758) $ with respect to $ M $ under condition (19)

    Figure 5.  Phase portrait of the limit cycle and corresponding time diagram of Hopf bifurcation in Figure 4(B). (A) Stable limit cycle generated by supercritical Hopf bifurcation at $ M = 0.6666 $. (B) Time diagram of stable limit cycle

    Figure 6.  Codimension two bifurcation diagrams of system (3). (A) In $ \alpha_1-\alpha_2 $ plane under condition (17). (B) In $ \alpha_1-M $ plane under condition (17). (C) In $ \alpha_2-M $ plane under condition (18). (D) In $ \alpha_1-M $ plane under condition (19)

    Figure 7.  Neighborhood of $ BT $ and $ GH $ points in Figure 6. (A) and (C) The neighborhood of $ BT $ point in Figure 6 (A) and (B). (B) and (D) The neighborhood of $ GH $ point in Figure 6 (A) and (D)

    Figure 8.  Phase portraits in the neighborhood of Bogdanov-Takens bifurcation point $ BT $ in Figure 7(A). (A) No interior equilibria. (B) Unstable hyperbolic focus. (C) Unstable limit cycle enclosing a stable hyperbolic focus

    Figure 9.  Phase portraits in the neighborhood of $ GH $ point ($ l_2>0 $) in Figure 7(B). (A) Single stable hyperbolic focus. (B) Unique and stable limit cycle enclosing unstable hyperbolic focus. (C) Two limit cycles (the inner one is unstable and the outer is stable) enclosing stable hyperbolic focus. (D) Unstable limit cycle enclosing stable hyperbolic focus

    Figure 10.  Phase portraits in the neighborhood of Bogdanov-Takens bifurcation point $ BT $ in Figure 7(A). (A) No interior equilibria. (B) Unstable hyperbolic focus. (C) Unstable limit cycle enclosing a stable hyperbolic focus

    Figure 11.  Phase portraits for the neighborhood of generalized Hopf bifurcation $ GH $ ($ l_2<0 $) in Figure 7(D). (A) Single stable equilibrium. (B) Unique and stable limit cycle enclosing unstable hyperbolic focus. (C) Two limit cycles (the inner one is unstable and the outer is stable) enclosing an stable hyperbolic focus. (D) Unstable limit cycle enclosing stable hyperbolic focus

  • [1] W. C. Allee, Animal Aggregations, University of Chicago Press, USA, 1931.
    [2] C. Arancibia-Ibarra, J. D. Flores, G. Pettet and P. Van Heijster, A Holling-Tanner predator-prey model with strong Allee effect, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 29 (2019), 1930032, 16 pp. doi: 10.1142/S0218127419300325.
    [3] A. ArsieC. Kottegoda and C. H. Shan, A predator-prey system with generalized Holling type Ⅳ functional response and Allee effects in prey, J. Diff. Equ., 309 (2022), 704-740.  doi: 10.1016/j.jde.2021.11.041.
    [4] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331-340. 
    [5] G. Birkhoff and G. C. Rota, Ordinary Differential Equations, 4$^{th}$ edition, Boston, Mass.-New York-Toronto 1962.
    [6] R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, J. Math. Anal. Appl., 257 (2001), 206-222.  doi: 10.1006/jmaa.2000.7343.
    [7] D. L. DeAngelisR. A. Goldstein and R. V. O'Neill, A model for tropic interaction, Ecology, 56 (1975), 881-892. 
    [8] D. T. Dimitrov and H. V. Kojouharov, Complete mathematical analysis of predator-prey models with linear prey growth and Beddington-DeAngelis functional response, Appl. Math. Comput., 162 (2005), 523-538.  doi: 10.1016/j.amc.2003.12.106.
    [9] M. Fan and Y. Kuang, Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response, J. Math. Anal. Appl., 295 (2004), 15-39.  doi: 10.1016/j.jmaa.2004.02.038.
    [10] K. GarainU. Kumar and P. S. Mandal, Global dynamics in Beddington-DeAngelis prey-predator model with density dependent death rate of predator, Differ. Equ. Dyn. Syst., 29 (2021), 265-283.  doi: 10.1007/s12591-019-00469-9.
    [11] M. Haque, A detailed study of the Beddington-DeAngelis predator-prey model, Math. Biosci., 234 (2011), 1-16.  doi: 10.1016/j.mbs.2011.07.003.
    [12] T. W. Hwang, Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 290 (2004), 113-122.  doi: 10.1016/j.jmaa.2003.09.073.
    [13] T. W. Hwang, Global analysis of the predator-prey system with Beddington-DeAngelis functional response, J. Math. Anal. Appl., 281 (2003), 395-401. 
    [14] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, 2$^{nd}$ edition, Springer-Verlag, New York, 1998.
    [15] S. LiuE. Beretta and D. Breda, Predator-prey model of Beddington-DeAngelis type with maturation and gestation delays, Nonlinear Anal. Real World Appl., 11 (2010), 4072-4091.  doi: 10.1016/j.nonrwa.2010.03.013.
    [16] M. LorenzonA. Pozzebon and C. Duso, Effects of potential food sources on biological and demographic parameters of the predatory mites Kampimodromus aberrans, Typhlodromus pyri and Amblyseius andersoni, Exp. Appl. Acarol., 58 (2012), 259-278. 
    [17] A. J. Lotka, Elements of Physical Biology, 1$^{st}$ edition, Williams and Wilkins, Baltimore, 1925.
    [18] R. K. Naji and A. T. Balasim, Dynamical behavior of a three species food chain model with Beddington-DeAngelis functional response, Chaos Soliton. Fract., 32 (2007), 1853-1866.  doi: 10.1016/j.chaos.2005.12.019.
    [19] K. Negi and S. Gakkhar, Dynamics in a Beddington-DeAngelis prey-predator system with impulsive harvesting, Ecol. Modell., 206 (2007), 421-430. 
    [20] L. Perko, Differential Equations and Dynamical Systems, 2$^{nd}$ edition, Springer, New York, 1996. doi: 10.1007/978-1-4684-0249-0.
    [21] Z. Shang and Y. Qiao, Bifurcation analysis of a Leslie-type predator-prey system with simplified Holling type Ⅳ functional response and strong Allee effect on prey, Nonlinear Anal. Real World Appl., 64 (2022), 103453.  doi: 10.1016/j.nonrwa.2021.103453.
    [22] A. N. Shoshitaishvili, Bifurcations of topological type of a vector field near a singular point, Trudy Semin. Im. I. G. Petrovskogo, 1 (1975), 279-309. 
    [23] X. Song and L. Chen, Optimal harvesting and stability for a two-species competitive system with stage structure, Math. Biosci., 170 (2001), 173-186.  doi: 10.1016/S0025-5564(00)00068-7.
    [24] J. P. TripathiD. Jana and V. Tiwari, A Beddington-DeAngelis type one-prey two-predator competitive system with help, Nonlinear Dyn., 94 (2018), 553-573. 
    [25] V. Volterra, Fluctuations in the abundance of species, considered mathematically, Nature, 118 (1926), 558-560. 
    [26] J. WangJ. Shi and J. Wei, Predator-prey system with strong Allee effect in prey, J. Math. Biol., 62 (2011), 291-331.  doi: 10.1007/s00285-010-0332-1.
    [27] X. ZhangQ. L. Zhang and V. Sreeram, Bifurcation analysis and control of a discrete harvested prey-predator system with Beddington-DeAngelis functional response, J. Franklin Inst., 347 (2010), 1076-1096.  doi: 10.1016/j.jfranklin.2010.03.016.
  • 加载中

Figures(11)

SHARE

Article Metrics

HTML views(1364) PDF downloads(253) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return