\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Exponential stability for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights

  • *Corresponding author: Wenjun Liu

    *Corresponding author: Wenjun Liu 

The authors Wenjun Liu, Aowen Kong and Yanning An were supported by National Natural Science Foundation of China (Grant No. 11771216), Key Research and Development Program of Jiangsu Province (Social Development) (Grant No. BE2019725) and Qing Lan Project of Jiangsu Province and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX20_0945)

Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we consider a system of magnetic effected piezoelectric beams with interior time-varying delay and time-dependent weights, in which the beam is clamped at the two side points subject to a single distributed state feedback controller with a time-varying delay. By combining the semigroup theory with Kato's variable norm technique, we obtain the existence and uniqueness of solution. By imposing appropriate assumptions on the time-varying delay term and time-dependent weights, we introduce suitable perturbed Lyapunov functional to obtain exponential stability estimates.

    Mathematics Subject Classification: Primary: 35Q60, 35Q74, 35L20; Secondary: 93D15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Y. S. Al-Zahrani et al., Piezoelectric field enhancement in Ⅲ–Ⅴ core-shell nanowires, Nano Energy., 14 (2015), 382-391.
    [2] V. BarrosC. Nonato and C. Raposo, Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights, Electron. Res. Arch., 28 (2020), 205-220.  doi: 10.3934/era.2020014.
    [3] A. BenaissaA. Benguessoum and S. A. Messaoudi, Energy decay of solutions for a wave equation with a constant weak delay and a weak internal feedback, Electron. J. Qual. Theory Differ. Equ., (2014), 1-13.  doi: 10.14232/ejqtde.2014.1.11.
    [4] A. BlanguernonF. Léné and M. Bernadou, Active control of a beam using a piezoceramic element, Smart Mater. Struct., 8 (1999), 116-124. 
    [5] W. G. Cady, Piezoelectricity, Dover Publications, Inc. New York, 1964.
    [6] M. ChenW. Liu and W. Zhou, Existence and general stabilization of the Timoshenko system of thermo-viscoelasticity of type Ⅲ with frictional damping and delay terms, Adv. Nonlinear Anal., 7 (2018), 547-569.  doi: 10.1515/anona-2016-0085.
    [7] D. Damjanovic, Ferroelectric dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys., 61 (1999), 1267-1324. 
    [8] G. Davi and A. Milazzo, Multidomain boundary integral formulation for piezoelectric materials fracture mechanics, Int. J. Solids Struct., 38 (2001), 7065-7078. 
    [9] J. M. DietlA. M. Wickenheiser and E. Garcia, A Timoshenko beam model for cantilevered piezoelectric energy harvesters, Smart Mater. Struct., 19 (2010), 055018. 
    [10] B. Feng and A. Özer, Exponential stability results for the boundary-controlled fully-dynamic piezoelectric beams with various distributed and boundary delays, J. Math. Anal. Appl., 508 (2022), 125845.  doi: 10.1016/j.jmaa.2021.125845.
    [11] B. Feng and X. G. Yang, Long-time dynamics for a nonlinear Timoshenko system with delay, Appl. Anal., 96 (2017), 606-625.  doi: 10.1080/00036811.2016.1148139.
    [12] M. Ferhat, et al., Existence of global solutions and decay estimates for a viscoelastic Petrovsky equation with internal distributed delay, Rend. Circ. Mat. Palermo, 68 (2019), 477–498. doi: 10.1007/s12215-018-0373-7.
    [13] M. M. Freitas, et al., Long-time dynamics for a fractional piezoelectric system with magnetic effects and Fourier's law, J. Differential Equations, 280 (2021), 891-927. doi: 10.1016/j.jde.2021.01.030.
    [14] H. Y. Hu and Z. H. Wang, Dynamics of Controlled Mechanical Systems with Delayed Feedback, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-05030-9.
    [15] T. Kato, Linear and quasi-linear equations of evolution of hyperbolic type, C.I.M.E. Summer Sch., 72 (2011), 125-191.  doi: 10.1007/978-3-642-11105-1_4.
    [16] H. Kawai, The Piezoelectricity of poly (vinylidene Fluoride, Jpn. J. Appl. Phys., 8 (1969), 975-976. 
    [17] M. KiraneB. Said-Houari and M. N. Anwar, Stability result for the Timoshenko system with a time-varying delay term in the internal feedbacks, Commun. Pure Appl. Anal., 10 (2011), 667-686.  doi: 10.3934/cpaa.2011.10.667.
    [18] A. KongC. NonatoW. LiuM. d. Santos and C. Raposo, Equivalence between exponential stabilization and observability inequality for magnetic effected piezoelectric beams with time-varying delay and time-dependent weights, Discrete Contin. Dyn. Syst. Ser. B., 27 (2022), 2959-2978.  doi: 10.3934/dcdsb.2021168.
    [19] G. Liu and L. Diao, Energy decay of the solution for a weak viscoelastic equation with a time-varying delay, Acta Appl. Math., 155 (2018), 9-19.  doi: 10.1007/s10440-017-0142-1.
    [20] W. LiuD. Chen and Z. Chen, Long-time behavior for a thermoelastic microbeam problem with time delay and the Coleman-Gurtin thermal law, Acta Math. Sci. Ser. B, 41 (2021), 609-632.  doi: 10.1007/s10473-021-0220-3.
    [21] W. Liu and M. Chen, Well-posedness and exponential decay for a porous thermoelastic system with second sound and a time-varying delay term in the internal feedback, Contin. Mech. Thermodyn., 29 (2017), 731-746.  doi: 10.1007/s00161-017-0556-z.
    [22] W. Liu and H. Zhuang, Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 907-942.  doi: 10.3934/dcdsb.2020147.
    [23] T. R. Meeker, Publication and Proposed Revision of ANSI/IEEE Standard 176-1987 ANSI/IEEE Standard on Piezoelectricity, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 43 (1996), 717. 
    [24] S. A. Messaoudi and W. Al-Khulaifi, General and optimal decay for a viscoelastic equation with boundary feedback, Topol. Methods Nonlinear Anal., 51 (2018), 413-427.  doi: 10.12775/tmna.2017.066.
    [25] S. A. MessaoudiA. Fareh and N. Doudi, Well posedness and exponential stability in a wave equation with a strong damping and a strong delay, J. Math. Phys., 57 (2016), 111501.  doi: 10.1063/1.4966551.
    [26] K. A. Morris and A. Özer, Strong stabilization of piezoelectric beams with magnetic effects, In: 52nd IEEE Conference on Decision and Control, (2013), 3014-3019.
    [27] K. A. Morris and A. Özer, Modeling and stabilizability of voltage-actuated piezoelectric beams with magnetic effects, SIAM J. Control Optim., 52 (2014), 2371-2398.  doi: 10.1137/130918319.
    [28] S. Nicaise and C. Pignotti, Interior feedback stabilization of wave equations with time dependent delay, Electron. J. Differential Equations., 2011 (2011), 1-20. 
    [29] S. NicaiseJ. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, Discrete Contin. Dyn. Syst. Ser. S., 2 (2009), 559-581.  doi: 10.3934/dcdss.2009.2.559.
    [30] C. NonatoC. Raposo and B. Feng, Exponential stability for a thermoelastic laminated beam with nonlinear weights and time-varying delay, Asymptot. Anal., 126 (2022), 157-185.  doi: 10.3233/asy-201668.
    [31] G. Poulin-VittrantC. OshmanC. OpokuA. S. DahiyaN. CamaraD. AlquierL.-P. T. H Hue and M. Lethiecq, Fabrication and characterization of ZnO nanowire-based piezoelectric nanogenerators for low frequency mechanical energy harvesting, Phys. Procedia., 70 (2015), 909-913. 
    [32] A. J. A. Ramos, et al., Equivalence between exponential stabilization and boundary observability for piezoelectric beams with magnetic effect, Z. Angew. Math. Phys., 70 (2019), 1-14. doi: 10.1007/s00033-019-1106-2.
    [33] A. J. A. Ramos, et al., Exponential stabilization of fully dynamic and electrostatic piezoelectric beams with delayed distributed damping feedback, Z. Angew. Math. Phys., 72 (2021), 1-15. doi: 10.1007/s00033-020-01457-8.
    [34] A. J. A. RamosC. S. L. Gonçalves and S. S. Corrêa Neto, Exponential stability and numerical treatment for piezoelectric beams with magnetic effect, ESAIM Math. Model. Numer. Anal., 52 (2018), 255-274.  doi: 10.1051/m2an/2018004.
    [35] C. Raposo, J. A. D. Chuquipoma, J. A. J. Avila, et al., Exponential decay and numerical solution for a Timoshenko system with delay term in the internal feedback, Int. J. Anal. Appl., 3 (2013), 1-13.
    [36] N. N. Rogacheva, The Theory of Piezoelectric Shells and Plates, CRC Press, 1994.
    [37] H. F. Tiersten, Linear Piezoelectric Plate Vibrations, Springer, 1969.
    [38] K. Uchino, The development of piezoelectric materials and the new perspective, Advanced Piezoelectric Materials, 2010.
    [39] J. M. Wang and B. Z. Guo, Analyticity and dynamic behavior of a damped three-layer sandwich beam, J. Optim. Theory Appl., 137 (2008), 675-689.  doi: 10.1007/s10957-007-9341-7.
    [40] J. M. WangB. Z. Guo and B. Chentouf, Boundary feedback stabilization of a three-layer sandwich beam: Riesz basis approach, ESAIM Control Optim. Calc. Var., 12 (2006), 12-34.  doi: 10.1051/cocv:2005030.
    [41] P. Wang and J. Hao, Asymptotic stability of memory-type Euler-Bernoulli plate with variable coefficients and time delay, J. Syst. Sci. Complex., 32 (2019), 1375-1392.  doi: 10.1007/s11424-018-7370-y.
    [42] H. J. Xiang and Z. F. Shi, Static analysis for multi-layered piezoelectric cantilevers, Int. J. Solids Struct., 45 (2008), 113-128. 
    [43] S. Xu and F. Zhang, Global asymptotic stability of positive steady states of a solid avascular tumor growth model with time delays, Rocky Mountain J. Math., 48 (2018), 1685-1702.  doi: 10.1216/RMJ-2018-48-5-1685.
    [44] J. Yang, A Review of a few topics in piezoelectricity, Appl. Mech. Rev., 59 (2006), 335-345. 
    [45] J. Yang, An Introduction to the Theory of Piezoelectricity, 2$^{nd}$ edtion, Advances in Mechanics and Mathematics, 9. Springer, Cham, 2018. doi: 10.1007/978-3-030-03137-4.
    [46] C. Yang and J. M. Wang, Exponential stability of an active constrained layer beam actuated by a voltage source without magnetic effects, J. Math. Anal. Appl., 448 (2017), 1204-1227.  doi: 10.1016/j.jmaa.2016.11.067.
    [47] Y. L. Zhang and J.-M. Wang, Wang, Moment approach to the boundary exact controllability of an active constrained layer beam, J. Math. Anal. Appl., 465 (2018), 643-657.  doi: 10.1016/j.jmaa.2018.05.032.
    [48] F. ZhuM. B. WardJ. F. Li and S. J. Milne, Core-shell garni structures and ferroelectric properties of Na$_{0.5}$K$_{0.5}$NbO$_3$-LiTaO$_3$-BiScO$_3$ piezoelectric ceramics, Data Brief., 4 (2015), 34-39. 
  • 加载中
SHARE

Article Metrics

HTML views(165) PDF downloads(116) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return