Article Contents
Article Contents

# Dynamics of plant disease models with continuous and pulse farming awareness control

• *Corresponding author: Sanyi Tang
• How to develop the mathematical model of plant disease transmission and consider the effect of saturated farming awareness strategies on plant disease control is of great practical significance. To do this, the plant disease transmission models with continuous and pulse farming awareness control strategy have been proposed in the present paper. For the model with continuous control strategies, the threshold values for the existence and stability of multiple equilibria have been given, and the effect of farming awareness on disease persistence is discussed; For the model with nonlinear impulsive control tactics, the existence and stability of the plant disease-free periodic solutions are investigated and the threshold condition is given, further we get the conditions for the permanence of the system and obtain the sufficient conditions under which the positive periodic solution exists by bifurcation theory. Numerical simulations reveal that people's farming awareness, especially global awareness, plays an important role in controlling and eradicating the plant disease. Moreover, the nonlinear impulsive control could result in the complex dynamic behavior, including period doubling, chaos and multiple attractors, which makes it difficult to design a successful plant disease control strategy.

Mathematics Subject Classification: Primary: 34A37, 34D20, 34H05; Secondary: 92C80, 92D25.

 Citation:

• Figure 1.  The effects of aware population recruitment rate $\alpha$ on the solutions of system (1). The parameter values are fixed as follows: $r = 0.03, \eta = 0.015, \theta = 0.001, \delta_{1} = 0.05, \delta_{2} = 0.03, \beta = 0.0003, g = 0.003, K = 50,$ and initial values $(S_{0}, I_{0}, A_{0}) = (48, 2, 0)$

Figure 2.  The effects of $T$ on the threshold values $R_{i},(i = 1,2.)$; Blue represents $R_{1}$ and black represents $R_{2}$. The other parameter values are $r = 0.03, \alpha = 0.5, \eta = 0.015, \theta = 0.03, \delta_{1} = 0.03, \delta_{2} = 0.03, \beta = 0.005, \omega = 0.2, p = 0.5, g = 0.003, K = 50$

Figure 3.  Bifurcation diagrams of model (8) with respect to bifurcation parameter $T$. (A) The effects of $T$ on the dynamical behavior of infected plants with constant initial values; (B) The effects of $T$ on the dynamical behavior of infected plants with random initial values. The other parameter values are fixed as follows $r = 0.06, \alpha = 0.5, \eta = 0.015, \theta = 0.03, \delta_{1} = 0.03, \delta_{2} = 0.03, \beta = 0.005, \omega = 0.2, p = 0.5, g = 0.003, K = 50$

Figure 4.  Two coexisting attractors of model (8) with $T = 54$. The other parameter values are $r = 0.06, \alpha = 0.5, \eta = 0.015, \theta = 0.03, \delta_{1} = 0.03, \delta_{2} = 0.03, \beta = 0.005, \omega = 0.2, p = 0.5, g = 0.003, K = 50.$ The initial conditions are (left) $(S_{0},I_{0},A_{0}) = (10,10,0),$ (right)$(S_{0},I_{0},A_{0}) = (31,10,0)$

Figure 5.  The basin of attraction of model (8) corresponding to Fig. 4. The range of initial values is $0.01\leq S_{0}\leq 30$ on horizontal axis, $0.01\leq I_{0}\leq 30$ on vertical axis. The red and green points are attracted to the attractors shown in Fig. 4 from left to right, respectively

Figure 6.  The effects of the parameter sets on the threshold level $R_{0}^{A_{0}}.$ The parameter values are as follows: $\beta = 0.005,$ $g = 0.003,$ $\eta = 0.015,$ $K = 50,$ $r = 0.03,$ $\delta_{1} = 0.05,$ $\delta_{2} = 0.03.$ (A)$\theta = 0.05;$ (B)$A_{0} = 10$

Figure 7.  The effects of global awareness level $A_{0}$ and infected plants harvesting rate $\theta$ on the threshold level $R_{0}^{A_{0}}.$ The parameter values are as follows: $\beta = 0.005,$ $g = 0.003,$ $\eta = 0.015,$ $K = 50,$ $r = 0.03,$ $\delta_{1} = 0.05,$ $\delta_{2} = 0.03$

Figure 8.  The effects of the parameter sets on the threshold level $R_{1}^{A_{0}}.$ The parameter values are as follows: $\beta = 0.005,$ $g = 0.003,$ $\eta = 0.015,$ $K = 50,$ $r = 0.03,$ $\delta_{1} = 0.05,$ $\delta_{2} = 0.03.$ (A)$T = 7,$ $\omega = 0.2,$ $p = 0.5,$ $\theta = 0.05;$ (B)$\omega = 0.2,$ $\theta = 0.05,$ $p = 0.5,$ $A_{0} = 10;$ (C)$T = 7,$ $\theta = 0.05,$ $p = 0.5,$ $A_{0} = 10;$(D)$\omega = 0.2,$ $T = 7,$ $p = 0.5,$ $A_{0} = 10$

Figure 9.  The effects of pulse periods and parameter sets on the threshold level $R_{1}^{A_{0}}.$ The parameter values are fixed as follows: $\beta = 0.005,$ $g = 0.003,$ $\eta = 0.015,$ $K = 50,$ $r = 0.03,$ $\delta_{1} = 0.05,$ $\delta_{2} = 0.03.$ (A) $\omega = 0.2,$ $\theta = 0.05,$ $A_{0} = 10;$ (B)$\omega = 0.2,$ $\theta = 0.05,$ $p = 0.5;$ (C) $p = 0.5,$ $\theta = 0.05,$ $A_{0} = 10;$ (D)$\omega = 0.2,$ $p = 0.5,$ $A_{0} = 10$

•  [1] G. Agaba, Y. Kyrychko and K. Blyuss, Mathematical model for the impact of awareness on the dynamics of infectious diseases, Math. Biosci., 286 (2017), 22-30.  doi: 10.1016/j.mbs.2017.01.009. [2] G. Agaba, Y. Kyrychko and K. Blyuss, Dynamics of vaccination in a time-delayed epidemic model with awareness, Math. Biosci., 294 (2017), 92-99.  doi: 10.1016/j.mbs.2017.09.007. [3] B. F. Al, K. B. Blyuss and S. Ray, Modelling the effects of awareness-based interventions to control the mosaic disease of jatropha curcas, Ecol. Complex., 36 (2018), 92-100. [4] D. Bainov and P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific and Technical, New York, 1993. [5] F. A. Basir, S. Adhurya, M. Banerjee, E. Venturino and S. Ray, Modelling the effect of incubation and latent periods on the dynamics of vector-borne plant viral diseases, B. Math. Biol., 82 (2020), 94.  doi: 10.1007/s11538-020-00767-2. [6] F. A. Basir, A. Banerjee and S. Ray, Role of farming awareness in crop pest management - a mathematical model, J. Theor. Biol., 461 (2019), 59-67.  doi: 10.1016/j.jtbi.2018.10.043. [7] F. A. Basir and S. Ray, Impact of farming awareness based roguing, insecticide spraying and optimal control on the dynamics of mosaic disease, Ric. Mat., 69 (2020), 393-412.  doi: 10.1007/s11587-020-00522-8. [8] F. A. Basir, E. Venturino, S. Ray and P. Roy, Impact of farming awareness and delay on the dynamics of mosaic disease in jatropha curcas plantations, Comput. Appl. Math., 37 (2018), 6108-6131.  doi: 10.1007/s40314-018-0675-6. [9] F. A. Basir, E. Venturino and P. K. Roy, Effects of awareness program for controlling mosaic disease in jatropha curcas plantations, Math. Method. Appl. Sci., 40 (2017), 2441-2453.  doi: 10.1002/mma.4149. [10] V. A. Bokil, L. Allen, M. J. Jeger and S. Lenhart, Optimal control of a vectored plant disease model for a crop with continuous replanting, J. Biol. Dynam., 13 (2019), 325-353.  doi: 10.1080/17513758.2019.1622808. [11] M. S. Chan and M. J. Jeger, An analytical model of plant virus disease dynamics with roguing and replanting, J. Appl. Ecol., 31 (1994), 413-427. [12] S. Baas, P. Conforti, S. Ahmed and G. Markova, Impact of disasters and crises on agriculture and food security, 2017, FAO, Rome, 2018. [13] S. Fishman and R. Marcus, A model for spread of plant disease with periodic removals, J. Math. Biol., 21 (1984), 149-158.  doi: 10.1007/BF00277667. [14] S. Funk, M. Salath and V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review, J. R. Soc., Interface, 7 (2010), 1247-1256. [15] S. Gao, L. Xia, Y. Liu and D. Xie, A plant virus disease model with periodic environment and pulse roguing, Stud. Appl. Math., 136 (2015), 357-381.  doi: 10.1111/sapm.12109. [16] M. Jackson and B. M. Chen-Charpentier, A model of biological control of plant virus propagation with delays, J. Comput. Appl. Math., 330 (2018), 855-865.  doi: 10.1016/j.cam.2017.01.005. [17] M. J. Jeger, L. V. Madden and F. van den Bosch, Plant virus epidemiology: Applications and prospects for mathematical modeling and analysis to improve understanding and disease control, Plant Dis., 102 (1984), 837-854. [18] M. J. Jeger, N. K. G. Salama, M. W. Shaw, F. Berg and F. Bosch, Effects of plant pathogens on population dynamics and community composition in grassland ecosystems: Two case studies, Eur. J. Plant Pathol., 138 (2014), 513-527. [19] A. Lakmeche, M. Helal and A. Lakmeche, Pulsed chemotherapy model, E. J. Math. Anal. Appl., 2 (2014), 127-148. [20] J. LaSalle, The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics, Philadelphia, 1976. [21] A. Misra, A. Sharma and J. Shukla, Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases, Math. Comput. Model., 53 (2011), 1221-1228.  doi: 10.1016/j.mcm.2010.12.005. [22] A. K. Shaw, M. Igoe, A. G. Power, N. A. Bosque-Pérez and A. Peace, Modeling approach influences dynamics of a vector-borne pathogen system, B. Math. Biol., 81 (2019), 2011-2028.  doi: 10.1007/s11538-019-00595-z. [23] S. Tang, Y. Xiao and R. A. Cheke, Dynamical analysis of plant disease models with cultural control strategies and economic thresholds, Math. Comput. Simulat., 80 (2010), 894-921.  doi: 10.1016/j.matcom.2009.10.004. [24] F. van den Bosch, M. J. Jeger and C. A. Gilligan, Disease control and its selection for damaging plant virus strains in vegetatively propagated staple food crops; a theoretical assessment, P. Roy. Soc. B-Biol. Sci., 274 (2007), 11-18. [25] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.  doi: 10.1016/S0025-5564(02)00108-6. [26] P. van Lierop, E. Lindquist, S. Sathyapala and G. Franceschini, Global forest area disturbance from fire, insect pests, diseases and severe weather events, Forest Ecol. Manag., 352 (2015), 78-88. [27] T. Zhao and Y. Xiao, Plant disease models with nonlinear impulsive cultural control strategies for vegetatively propagated plants, Math. Comput. Simulat., 107 (2015), 61-91.  doi: 10.1016/j.matcom.2014.03.009. [28] W. Zhao, J. Li, T. Zhang, X. Meng and T. Zhang, Persistence and ergodicity of plant disease model with markov conversion and impulsive toxicant input, Commun. Nonlinear Sci., 48 (2017), 70-84.  doi: 10.1016/j.cnsns.2016.12.020.

Figures(9)

• on this site

/