-
Previous Article
On the κ - θ model of cellular flames: Existence in the large and asymptotics
- DCDS-S Home
- This Issue
-
Next Article
On sharp interface limits of Allen--Cahn/Cahn--Hilliard variational inequalities
Counting uniformly attracting solutions of nonautonomous differential equations
1. | Department of Mathematics and Statistics, University of Canterbury, Christchurch |
[1] |
Zhengxin Zhou. On the Poincaré mapping and periodic solutions of nonautonomous differential systems. Communications on Pure and Applied Analysis, 2007, 6 (2) : 541-547. doi: 10.3934/cpaa.2007.6.541 |
[2] |
Arne Ogrowsky, Björn Schmalfuss. Unstable invariant manifolds for a nonautonomous differential equation with nonautonomous unbounded delay. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1663-1681. doi: 10.3934/dcdsb.2013.18.1663 |
[3] |
Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167 |
[4] |
Sebastián Ferrer, Francisco Crespo. Alternative angle-based approach to the $\mathcal{KS}$-Map. An interpretation through symmetry and reduction. Journal of Geometric Mechanics, 2018, 10 (3) : 359-372. doi: 10.3934/jgm.2018013 |
[5] |
Wan-Tong Li, Bin-Guo Wang. Attractor minimal sets for nonautonomous type-K competitive and semi-convex delay differential equations with applications. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 589-611. doi: 10.3934/dcds.2009.24.589 |
[6] |
Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899 |
[7] |
Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 167-198. doi: 10.3934/dcdsb.2021036 |
[8] |
Antonio Garijo, Xavier Jarque. The secant map applied to a real polynomial with multiple roots. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6783-6794. doi: 10.3934/dcds.2020133 |
[9] |
Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587 |
[10] |
Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 215-238. doi: 10.3934/dcdsb.2005.5.215 |
[11] |
Chunqiu Li, Desheng Li, Xuewei Ju. On the forward dynamical behavior of nonautonomous systems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 473-487. doi: 10.3934/dcdsb.2019190 |
[12] |
Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194 |
[13] |
Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727 |
[14] |
David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96-101. doi: 10.3934/proc.2001.2001.96 |
[15] |
Hongyong Cui, Peter E. Kloeden, Meihua Yang. Forward omega limit sets of nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1103-1114. doi: 10.3934/dcdss.2020065 |
[16] |
Qiyuan Wei, Liwei Zhang. An accelerated differential equation system for generalized equations. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021195 |
[17] |
Victor Kozyakin. Polynomial reformulation of the Kuo criteria for v- sufficiency of map-germs. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 587-602. doi: 10.3934/dcdsb.2010.14.587 |
[18] |
Armengol Gasull, Víctor Mañosa. Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 651-670. doi: 10.3934/dcdsb.2019259 |
[19] |
M. A. M. Alwash. Polynomial differential equations with small coefficients. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1129-1141. doi: 10.3934/dcds.2009.25.1129 |
[20] |
Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]