-
Previous Article
Uniqueness of the principal eigenvalue in nonlocal boundary value problems
- DCDS-S Home
- This Issue
-
Next Article
3D steady compressible Navier--Stokes equations
Two-equation model of mean flow resonances in subcritical flow systems
1. | Department of Mathematics and Computing and Computational Engineering and Science Research Centre, University of Southern Queensland, Toowoomba, Queensland 4350, Australia |
[1] |
Eric S. Wright. Macrotransport in nonlinear, reactive, shear flows. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2125-2146. doi: 10.3934/cpaa.2012.11.2125 |
[2] |
Anna Geyer, Ronald Quirchmayr. Weakly nonlinear waves in stratified shear flows. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2309-2325. doi: 10.3934/cpaa.2022061 |
[3] |
Zhenlu Cui, Qi Wang. Permeation flows in cholesteric liquid crystal polymers under oscillatory shear. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 45-60. doi: 10.3934/dcdsb.2011.15.45 |
[4] |
Alex Mahalov, Mohamed Moustaoui, Basil Nicolaenko. Three-dimensional instabilities in non-parallel shear stratified flows. Kinetic and Related Models, 2009, 2 (1) : 215-229. doi: 10.3934/krm.2009.2.215 |
[5] |
Jae-Hong Pyo, Jie Shen. Normal mode analysis of second-order projection methods for incompressible flows. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 817-840. doi: 10.3934/dcdsb.2005.5.817 |
[6] |
M. Bulíček, P. Kaplický. Incompressible fluids with shear rate and pressure dependent viscosity: Regularity of steady planar flows. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 41-50. doi: 10.3934/dcdss.2008.1.41 |
[7] |
James Nolen, Jack Xin. Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1217-1234. doi: 10.3934/dcds.2005.13.1217 |
[8] |
Xavier Perrot, Xavier Carton. Point-vortex interaction in an oscillatory deformation field: Hamiltonian dynamics, harmonic resonance and transition to chaos. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 971-995. doi: 10.3934/dcdsb.2009.11.971 |
[9] |
Thierry Gallay. Stability and interaction of vortices in two-dimensional viscous flows. Discrete and Continuous Dynamical Systems - S, 2012, 5 (6) : 1091-1131. doi: 10.3934/dcdss.2012.5.1091 |
[10] |
Hong Zhou, M. Gregory Forest, Qi Wang. Anchoring-induced texture & shear banding of nematic polymers in shear cells. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 707-733. doi: 10.3934/dcdsb.2007.8.707 |
[11] |
Siwei Yu, Jianwei Ma, Stanley Osher. Geometric mode decomposition. Inverse Problems and Imaging, 2018, 12 (4) : 831-852. doi: 10.3934/ipi.2018035 |
[12] |
Raphael Stuhlmeier. Effects of shear flow on KdV balance - applications to tsunami. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1549-1561. doi: 10.3934/cpaa.2012.11.1549 |
[13] |
Vicenţiu D. Rădulescu. Noncoercive elliptic equations with subcritical growth. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 857-864. doi: 10.3934/dcdss.2012.5.857 |
[14] |
Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, J. Nathan Kutz. On dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 2014, 1 (2) : 391-421. doi: 10.3934/jcd.2014.1.391 |
[15] |
Steven L. Brunton, Joshua L. Proctor, Jonathan H. Tu, J. Nathan Kutz. Compressed sensing and dynamic mode decomposition. Journal of Computational Dynamics, 2015, 2 (2) : 165-191. doi: 10.3934/jcd.2015002 |
[16] |
Hao Zhang, Scott T. M. Dawson, Clarence W. Rowley, Eric A. Deem, Louis N. Cattafesta. Evaluating the accuracy of the dynamic mode decomposition. Journal of Computational Dynamics, 2020, 7 (1) : 35-56. doi: 10.3934/jcd.2020002 |
[17] |
Jijiang Sun, Chun-Lei Tang. Resonance problems for Kirchhoff type equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2139-2154. doi: 10.3934/dcds.2013.33.2139 |
[18] |
Sergiu Aizicovici, Nikolaos S. Papageorgiou, Vasile Staicu. Nonlinear Dirichlet problems with double resonance. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1147-1168. doi: 10.3934/cpaa.2017056 |
[19] |
Leszek Gasiński, Nikolaos S. Papageorgiou. Dirichlet $(p,q)$-equations at resonance. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2037-2060. doi: 10.3934/dcds.2014.34.2037 |
[20] |
D. Bonheure, C. Fabry. A variational approach to resonance for asymmetric oscillators. Communications on Pure and Applied Analysis, 2007, 6 (1) : 163-181. doi: 10.3934/cpaa.2007.6.163 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]