-
Previous Article
Strong stability of PDE semigroups via a generator resolvent criterion
- DCDS-S Home
- This Issue
-
Next Article
A new finite element scheme for Landau-Lifchitz equations
Delayed feedback control near Hopf bifurcation
1. | Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, Leipzig 04103, Germany |
[1] |
Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121 |
[2] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[3] |
Bin Fang, Xue-Zhi Li, Maia Martcheva, Li-Ming Cai. Global stability for a heroin model with two distributed delays. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 715-733. doi: 10.3934/dcdsb.2014.19.715 |
[4] |
Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119 |
[5] |
Miljana Jovanović, Vuk Vujović. Stability of stochastic heroin model with two distributed delays. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2407-2432. doi: 10.3934/dcdsb.2020016 |
[6] |
Xianlong Fu, Zhihua Liu, Pierre Magal. Hopf bifurcation in an age-structured population model with two delays. Communications on Pure and Applied Analysis, 2015, 14 (2) : 657-676. doi: 10.3934/cpaa.2015.14.657 |
[7] |
Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325 |
[8] |
Udhayakumar Kandasamy, Rakkiyappan Rajan. Hopf bifurcation of a fractional-order octonion-valued neural networks with time delays. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2537-2559. doi: 10.3934/dcdss.2020137 |
[9] |
Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6185-6205. doi: 10.3934/dcdsb.2021013 |
[10] |
Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264 |
[11] |
Yiwen Tao, Jingli Ren. The stability and bifurcation of homogeneous diffusive predator–prey systems with spatio–temporal delays. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 229-243. doi: 10.3934/dcdsb.2021038 |
[12] |
Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 |
[13] |
Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045 |
[14] |
John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 |
[15] |
Kazuyuki Yagasaki. Existence of finite time blow-up solutions in a normal form of the subcritical Hopf bifurcation with time-delayed feedback for small initial functions. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2621-2634. doi: 10.3934/dcdsb.2021151 |
[16] |
Shengqiang Liu, Lin Wang. Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences & Engineering, 2010, 7 (3) : 675-685. doi: 10.3934/mbe.2010.7.675 |
[17] |
Yasuhisa Saito. A global stability result for an N-species Lotka-Volterra food chain system with distributed time delays. Conference Publications, 2003, 2003 (Special) : 771-777. doi: 10.3934/proc.2003.2003.771 |
[18] |
Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 61-74. doi: 10.3934/dcdsb.2011.15.61 |
[19] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[20] |
Xiaoyuan Chang, Junjie Wei. Stability and Hopf bifurcation in a diffusive predator-prey system incorporating a prey refuge. Mathematical Biosciences & Engineering, 2013, 10 (4) : 979-996. doi: 10.3934/mbe.2013.10.979 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]