June  2009, 2(2): 325-336. doi: 10.3934/dcdss.2009.2.325

The modulated ergodic Hilbert transform

1. 

Department of Mathematics, North Dakota State University, P.O. Box 6050, Fargo, ND 58108-6050, United States

Received  February 2008 Revised  November 2008 Published  April 2009

In this article we study the ergodic Hilbert transform modulated by bounded sequences. We prove that sequences satisfying some variation conditions and are universally good for ordinary ergodic averages, such as the sequences defined by the Fourier coefficients of $L_p$ functions, are universally good modulating sequences for the ergodic Hilbert transform. We also prove that sequences belonging to the subfamily $B_1^{\alpha} $ of the two-sided bounded Besicovitch class $B_1$ are good modulating sequences for the ergodic Hilbert transform.
Citation: Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325
[1]

Nam Yul Yu. A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences. Advances in Mathematics of Communications, 2014, 8 (2) : 209-222. doi: 10.3934/amc.2014.8.209

[2]

Juan H. Arredondo, Francisco J. Mendoza, Alfredo Reyes. On the norm continuity of the hk-fourier transform. Electronic Research Announcements, 2018, 25: 36-47. doi: 10.3934/era.2018.25.005

[3]

Georgi Grahovski, Rossen Ivanov. Generalised Fourier transform and perturbations to soliton equations. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 579-595. doi: 10.3934/dcdsb.2009.12.579

[4]

Huichi Huang. Fourier coefficients of $\times p$-invariant measures. Journal of Modern Dynamics, 2017, 11: 551-562. doi: 10.3934/jmd.2017021

[5]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems and Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[6]

Michael Music. The nonlinear Fourier transform for two-dimensional subcritical potentials. Inverse Problems and Imaging, 2014, 8 (4) : 1151-1167. doi: 10.3934/ipi.2014.8.1151

[7]

Jan-Cornelius Molnar. On two-sided estimates for the nonlinear Fourier transform of KdV. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3339-3356. doi: 10.3934/dcds.2016.36.3339

[8]

Matti Viikinkoski, Mikko Kaasalainen. Shape reconstruction from images: Pixel fields and Fourier transform. Inverse Problems and Imaging, 2014, 8 (3) : 885-900. doi: 10.3934/ipi.2014.8.885

[9]

Barbara Brandolini, Francesco Chiacchio, Jeffrey J. Langford. Estimates for sums of eigenvalues of the free plate via the fourier transform. Communications on Pure and Applied Analysis, 2020, 19 (1) : 113-122. doi: 10.3934/cpaa.2020007

[10]

Jae Gil Choi, David Skoug. Algebraic structure of the $ L_2 $ analytic Fourier–Feynman transform associated with Gaussian paths on Wiener space. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3829-3842. doi: 10.3934/cpaa.2020169

[11]

Jean-Claude Cuenin, Robert Schippa. Fourier transform of surface–carried measures of two-dimensional generic surfaces and applications. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022079

[12]

Rakesh Pilkar, Erik M. Bollt, Charles Robinson. Empirical mode decomposition/Hilbert transform analysis of postural responses to small amplitude anterior-posterior sinusoidal translations of varying frequencies. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1085-1097. doi: 10.3934/mbe.2011.8.1085

[13]

Andrey Kochergin. A Besicovitch cylindrical transformation with Hölder function. Electronic Research Announcements, 2015, 22: 87-91. doi: 10.3934/era.2015.22.87

[14]

Alexander Alekseenko, Jeffrey Limbacher. Evaluating high order discontinuous Galerkin discretization of the Boltzmann collision integral in $ \mathcal{O}(N^2) $ operations using the discrete fourier transform. Kinetic and Related Models, 2019, 12 (4) : 703-726. doi: 10.3934/krm.2019027

[15]

Irene Benedetti, Luisa Malaguti, Valentina Taddei. Nonlocal problems in Hilbert spaces. Conference Publications, 2015, 2015 (special) : 103-111. doi: 10.3934/proc.2015.0103

[16]

Fritz Gesztesy, Rudi Weikard, Maxim Zinchenko. On a class of model Hilbert spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5067-5088. doi: 10.3934/dcds.2013.33.5067

[17]

Ilesanmi Adeboye, Harrison Bray, David Constantine. Entropy rigidity and Hilbert volume. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1731-1744. doi: 10.3934/dcds.2019075

[18]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[19]

James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems and Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013

[20]

Sean Holman, Plamen Stefanov. The weighted Doppler transform. Inverse Problems and Imaging, 2010, 4 (1) : 111-130. doi: 10.3934/ipi.2010.4.111

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]