
Previous Article
Singularly nonautonomous semilinear parabolic problems with critical exponents
 DCDSS Home
 This Issue

Next Article
Preface
Semigroup wellposedness in the energy space of a parabolichyperbolic coupled StokesLamé PDE system of fluidstructure interaction
1.  Department of Mathematics, University of NebraskaLincoln, Lincoln, Nebraska 68588 
2.  Department of Mathematics, University of Virginia, P.O. Box 400137, Charlottesville, VA 22904 
[1] 
George Avalos, Thomas J. Clark. A mixed variational formulation for the wellposedness and numerical approximation of a PDE model arising in a 3D fluidstructure interaction. Evolution Equations and Control Theory, 2014, 3 (4) : 557578. doi: 10.3934/eect.2014.3.557 
[2] 
Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluidstructure interaction problem. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 633650. doi: 10.3934/dcds.2003.9.633 
[3] 
George Avalos, Daniel Toundykov. A uniform discrete infsup inequality for finite element hydroelastic models. Evolution Equations and Control Theory, 2016, 5 (4) : 515531. doi: 10.3934/eect.2016017 
[4] 
Grégoire Allaire, Alessandro Ferriero. Homogenization and long time asymptotic of a fluidstructure interaction problem. Discrete and Continuous Dynamical Systems  B, 2008, 9 (2) : 199220. doi: 10.3934/dcdsb.2008.9.199 
[5] 
Serge Nicaise, Cristina Pignotti. Asymptotic analysis of a simple model of fluidstructure interaction. Networks and Heterogeneous Media, 2008, 3 (4) : 787813. doi: 10.3934/nhm.2008.3.787 
[6] 
Igor Kukavica, Amjad Tuffaha. Solutions to a fluidstructure interaction free boundary problem. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 13551389. doi: 10.3934/dcds.2012.32.1355 
[7] 
George Avalos, Roberto Triggiani. Fluidstructure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations and Control Theory, 2013, 2 (4) : 563598. doi: 10.3934/eect.2013.2.563 
[8] 
Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira. Numerical simulations of a 3D fluidstructure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences & Engineering, 2017, 14 (1) : 179193. doi: 10.3934/mbe.2017012 
[9] 
Daniele Boffi, Lucia Gastaldi, Sebastian Wolf. Higherorder timestepping schemes for fluidstructure interaction problems. Discrete and Continuous Dynamical Systems  B, 2020, 25 (10) : 38073830. doi: 10.3934/dcdsb.2020229 
[10] 
Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić. Fluidstructure interaction in a prestressed tube with thick elastic walls I: the stationary Stokes problem. Networks and Heterogeneous Media, 2007, 2 (3) : 397423. doi: 10.3934/nhm.2007.2.397 
[11] 
George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluidstructure interaction with boundary dissipation at the interface. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 817833. doi: 10.3934/dcds.2008.22.817 
[12] 
Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary  lattice Boltzmann method for fluidstructure interaction. Discrete and Continuous Dynamical Systems  S, 2021, 14 (3) : 819833. doi: 10.3934/dcdss.2020349 
[13] 
Salim Meddahi, David Mora. Nonconforming mixed finite element approximation of a fluidstructure interaction spectral problem. Discrete and Continuous Dynamical Systems  S, 2016, 9 (1) : 269287. doi: 10.3934/dcdss.2016.9.269 
[14] 
Martina Bukač, Sunčica Čanić. Longitudinal displacement in viscoelastic arteries: A novel fluidstructure interaction computational model, and experimental validation. Mathematical Biosciences & Engineering, 2013, 10 (2) : 295318. doi: 10.3934/mbe.2013.10.295 
[15] 
Mehdi Badra, Takéo Takahashi. Feedback boundary stabilization of 2d fluidstructure interaction systems. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 23152373. doi: 10.3934/dcds.2017102 
[16] 
Henry Jacobs, Joris Vankerschaver. Fluidstructure interaction in the LagrangePoincaré formalism: The NavierStokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 3966. doi: 10.3934/jgm.2014.6.39 
[17] 
Eugenio Aulisa, Akif Ibragimov, Emine Yasemen KayaCekin. Fluid structure interaction problem with changing thickness beam and slightly compressible fluid. Discrete and Continuous Dynamical Systems  S, 2014, 7 (6) : 11331148. doi: 10.3934/dcdss.2014.7.1133 
[18] 
Daniele Boffi, Lucia Gastaldi. Discrete models for fluidstructure interactions: The finite element Immersed Boundary Method. Discrete and Continuous Dynamical Systems  S, 2016, 9 (1) : 89107. doi: 10.3934/dcdss.2016.9.89 
[19] 
Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with nonlinear beam. Conference Publications, 2009, 2009 (Special) : 424432. doi: 10.3934/proc.2009.2009.424 
[20] 
Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. FLUID STRUCTURE INTERACTION PROBLEM WITH CHANGING THICKNESS NONLINEAR BEAM Fluid structure interaction problem with changing thickness nonlinear beam. Conference Publications, 2011, 2011 (Special) : 813823. doi: 10.3934/proc.2011.2011.813 
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]