-
Previous Article
Geometric singular perturbation analysis of an autocatalator model
- DCDS-S Home
- This Issue
-
Next Article
Preface
Birth of canard cycles
1. | Universiteit Hasselt, Campus Diepenbeek, Agoralaan–gebouw D, 3590 Diepenbeek |
2. | Institut de Mathématique de Bourgogne, U.M.R. 5584 du C.N.R.S., Université de Bourgogne, B.P. 47 870, 21078 Dijon Cedex |
The most difficult problem to deal with concerns the uniform treatment of the evolution that a limit cycle undergoes when it grows from a small limit cycle near the singular point to a canard cycle of detectable size. This explains the title of the paper. The treatment is based on blow-up, good normal forms and appropriate Chebyshev systems. In the paper we also relate the slow-divergence integral as it is used in singular perturbation theory to Abelian integrals that have to be used in studying limit cycles close to the singular point.
[1] |
P. De Maesschalck, Freddy Dumortier. Detectable canard cycles with singular slow dynamics of any order at the turning point. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 109-140. doi: 10.3934/dcds.2011.29.109 |
[2] |
Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047 |
[3] |
Ilya Schurov. Duck farming on the two-torus: Multiple canard cycles in generic slow-fast systems. Conference Publications, 2011, 2011 (Special) : 1289-1298. doi: 10.3934/proc.2011.2011.1289 |
[4] |
Renato Huzak, P. De Maesschalck, Freddy Dumortier. Primary birth of canard cycles in slow-fast codimension 3 elliptic bifurcations. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2641-2673. doi: 10.3934/cpaa.2014.13.2641 |
[5] |
Min Hu, Tao Li, Xingwu Chen. Bi-center problem and Hopf cyclicity of a Cubic Liénard system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 401-414. doi: 10.3934/dcdsb.2019187 |
[6] |
Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021 |
[7] |
Hong Li. Bifurcation of limit cycles from a Li$ \acute{E} $nard system with asymmetric figure eight-loop case. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022033 |
[8] |
Jie Xu, Yu Miao, Jicheng Liu. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2233-2256. doi: 10.3934/dcdsb.2015.20.2233 |
[9] |
Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257 |
[10] |
Renato Huzak. Cyclicity of the origin in slow-fast codimension 3 saddle and elliptic bifurcations. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 171-215. doi: 10.3934/dcds.2016.36.171 |
[11] |
Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112 |
[12] |
John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 |
[13] |
Jianhe Shen, Maoan Han. Bifurcations of canard limit cycles in several singularly perturbed generalized polynomial Liénard systems. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3085-3108. doi: 10.3934/dcds.2013.33.3085 |
[14] |
Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129 |
[15] |
Jitsuro Sugie, Tadayuki Hara. Existence and non-existence of homoclinic trajectories of the Liénard system. Discrete and Continuous Dynamical Systems, 1996, 2 (2) : 237-254. doi: 10.3934/dcds.1996.2.237 |
[16] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[17] |
Mats Gyllenberg, Yan Ping. The generalized Liénard systems. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 1043-1057. doi: 10.3934/dcds.2002.8.1043 |
[18] |
Anatoly Neishtadt, Carles Simó, Dmitry Treschev, Alexei Vasiliev. Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 621-650. doi: 10.3934/dcdsb.2008.10.621 |
[19] |
Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6285-6310. doi: 10.3934/dcdsb.2021019 |
[20] |
Chunhua Shan. Slow-fast dynamics and nonlinear oscillations in transmission of mosquito-borne diseases. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1447-1469. doi: 10.3934/dcdsb.2021097 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]