December  2009, 2(4): 851-872. doi: 10.3934/dcdss.2009.2.851

Homoclinic orbits of the FitzHugh-Nagumo equation: The singular-limit

1. 

Mathematics Department, Cornell University, Ithaca, NY 14853, United States

2. 

Center for Applied Mathematics, Cornell University, Ithaca, NY 14853, United States

Received  September 2008 Revised  April 2009 Published  September 2009

The FitzHugh-Nagumo equation has been investigated with a wide array of different methods in the last three decades. Recently a version of the equations with an applied current was analyzed by Champneys, Kirk, Knobloch, Oldeman and Sneyd [5] using numerical continuation methods. They obtained a complicated bifurcation diagram in parameter space featuring a C-shaped curve of homoclinic bifurcations and a U-shaped curve of Hopf bifurcations. We use techniques from multiple time-scale dynamics to understand the structures of this bifurcation diagram based on geometric singular perturbation analysis of the FitzHugh-Nagumo equation. Numerical and analytical techniques show that if the ratio of the time-scales in the FitzHugh-Nagumo equation tends to zero, then our singular limit analysis correctly represents the observed CU-structure. Geometric insight from the analysis can even be used to compute bifurcation curves which are inaccessible via continuation methods. The results of our analysis are summarized in a singular bifurcation diagram.
Citation: John Guckenheimer, Christian Kuehn. Homoclinic orbits of the FitzHugh-Nagumo equation: The singular-limit. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 851-872. doi: 10.3934/dcdss.2009.2.851
[1]

Pablo Aguirre, Bernd Krauskopf, Hinke M. Osinga. Global invariant manifolds near a Shilnikov homoclinic bifurcation. Journal of Computational Dynamics, 2014, 1 (1) : 1-38. doi: 10.3934/jcd.2014.1.1

[2]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[3]

Mazyar Ghani Varzaneh, Sebastian Riedel. A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4587-4612. doi: 10.3934/dcdsb.2020304

[4]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[5]

Kai Wang, Hongyong Zhao, Hao Wang. Geometric singular perturbation of a nonlocal partially degenerate model for Aedes aegypti. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022122

[6]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[7]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part II. Networks and Heterogeneous Media, 2015, 10 (4) : 897-948. doi: 10.3934/nhm.2015.10.897

[8]

Chaoqun Huang, Nung Kwan Yip. Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8 (4) : 1009-1034. doi: 10.3934/nhm.2013.8.1009

[9]

Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807

[10]

John M. Hong, Cheng-Hsiung Hsu, Bo-Chih Huang, Tzi-Sheng Yang. Geometric singular perturbation approach to the existence and instability of stationary waves for viscous traffic flow models. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1501-1526. doi: 10.3934/cpaa.2013.12.1501

[11]

Heinz Schättler, Urszula Ledzewicz. Perturbation feedback control: A geometric interpretation. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 631-654. doi: 10.3934/naco.2012.2.631

[12]

Stéphane Chrétien, Sébastien Darses, Christophe Guyeux, Paul Clarkson. On the pinning controllability of complex networks using perturbation theory of extreme singular values. application to synchronisation in power grids. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 289-299. doi: 10.3934/naco.2017019

[13]

J. B. van den Berg, J. D. Mireles James. Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4637-4664. doi: 10.3934/dcds.2016002

[14]

Rovella Alvaro, Vilamajó Francesc, Romero Neptalí. Invariant manifolds for delay endomorphisms. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 35-50. doi: 10.3934/dcds.2001.7.35

[15]

Andrew D. Lewis, David R. Tyner. Geometric Jacobian linearization and LQR theory. Journal of Geometric Mechanics, 2010, 2 (4) : 397-440. doi: 10.3934/jgm.2010.2.397

[16]

Simone Farinelli. Geometric arbitrage theory and market dynamics. Journal of Geometric Mechanics, 2015, 7 (4) : 431-471. doi: 10.3934/jgm.2015.7.431

[17]

Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784

[18]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure and Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279

[19]

Leonardo Mora. Homoclinic bifurcations, fat attractors and invariant curves. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1133-1148. doi: 10.3934/dcds.2003.9.1133

[20]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (101)
  • HTML views (0)
  • Cited by (29)

Other articles
by authors

[Back to Top]