-
Previous Article
Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node
- DCDS-S Home
- This Issue
-
Next Article
Survival of subthreshold oscillations: The interplay of noise, bifurcation structure, and return mechanism
On stability loss delay for dynamical bifurcations
1. | Loughborough University, School of Mathematics, Leicestershire LE11 3TU, United Kingdom |
[1] |
Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257 |
[2] |
Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021 |
[3] |
Renato Huzak. Cyclicity of the origin in slow-fast codimension 3 saddle and elliptic bifurcations. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 171-215. doi: 10.3934/dcds.2016.36.171 |
[4] |
Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112 |
[5] |
Renato Huzak, P. De Maesschalck, Freddy Dumortier. Primary birth of canard cycles in slow-fast codimension 3 elliptic bifurcations. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2641-2673. doi: 10.3934/cpaa.2014.13.2641 |
[6] |
Ilya Schurov. Duck farming on the two-torus: Multiple canard cycles in generic slow-fast systems. Conference Publications, 2011, 2011 (Special) : 1289-1298. doi: 10.3934/proc.2011.2011.1289 |
[7] |
Anatoly Neishtadt, Carles Simó, Dmitry Treschev, Alexei Vasiliev. Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 621-650. doi: 10.3934/dcdsb.2008.10.621 |
[8] |
Jie Xu, Yu Miao, Jicheng Liu. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2233-2256. doi: 10.3934/dcdsb.2015.20.2233 |
[9] |
Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6285-6310. doi: 10.3934/dcdsb.2021019 |
[10] |
Chunhua Shan. Slow-fast dynamics and nonlinear oscillations in transmission of mosquito-borne diseases. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1447-1469. doi: 10.3934/dcdsb.2021097 |
[11] |
Liang Zhao, Jianhe Shen. Canards and homoclinic orbits in a slow-fast modified May-Holling-Tanner predator-prey model with weak multiple Allee effect. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022018 |
[12] |
Alexandre Caboussat, Allison Leonard. Numerical solution and fast-slow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123-132. doi: 10.3934/proc.2009.2009.123 |
[13] |
Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447 |
[14] |
Yancong Xu, Deming Zhu, Xingbo Liu. Bifurcations of multiple homoclinics in general dynamical systems. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 945-963. doi: 10.3934/dcds.2011.30.945 |
[15] |
Lana Horvat Dmitrović. Box dimension and bifurcations of one-dimensional discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1287-1307. doi: 10.3934/dcds.2012.32.1287 |
[16] |
Héctor Barge, José M. R. Sanjurjo. Higher dimensional topology and generalized Hopf bifurcations for discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2585-2601. doi: 10.3934/dcds.2021204 |
[17] |
C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603-614. doi: 10.3934/mbe.2006.3.603 |
[18] |
Yuri Kifer. Another proof of the averaging principle for fully coupled dynamical systems with hyperbolic fast motions. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1187-1201. doi: 10.3934/dcds.2005.13.1187 |
[19] |
Shivam Dhama, Chetan D. Pahlajani. Approximation of linear controlled dynamical systems with small random noise and fast periodic sampling. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022018 |
[20] |
Seung-Yeal Ha, Dohyun Kim, Jinyeong Park. Fast and slow velocity alignments in a Cucker-Smale ensemble with adaptive couplings. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4621-4654. doi: 10.3934/cpaa.2020209 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]