December  2010, 3(4): 517-532. doi: 10.3934/dcdss.2010.3.517

A geometric fractional monodromy theorem

1. 

Department of Mathematics, University of Groningen, PO Box 407, 9700 AK, Groningen, Netherlands

2. 

Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom

Received  April 2009 Revised  May 2010 Published  August 2010

We prove the existence of fractional monodromy for two degree of freedom integrable Hamiltonian systems with one-parameter families of curled tori under certain general conditions. We describe the action coordinates of such systems near curled tori and we show how to compute fractional monodromy using the notion of the rotation number.
Citation: Henk Broer, Konstantinos Efstathiou, Olga Lukina. A geometric fractional monodromy theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 517-532. doi: 10.3934/dcdss.2010.3.517
References:
[1]

Y. Colin de Verdière and San Vũ Ngoc, Singular Bohr-Sommerfeld rules for 2D integrable systems,, Ann. Sci. Éc. Norm. Sup., 36 (2003), 1.   Google Scholar

[2]

R. H. Cushman and J. J. Duistermaat, Non-Hamiltonian monodromy,, J. Diff. Eqs., 172 (2001), 42.  doi: 10.1006/jdeq.2000.3852.  Google Scholar

[3]

R. H. Cushman, H. Dullin, H. Hanßmann and S. Schmidt, The 1:±2 resonance,, Regular and Chaotic Dynamics, 12 (2007), 642.  doi: 10.1134/S156035470706007X.  Google Scholar

[4]

R. H. Cushman and San Vũ Ngoc, Sign of the monodromy for Liouville integrable systems,, Annales Henri Poincaré, 3 (2002), 883.  doi: 10.1007/s00023-002-8640-7.  Google Scholar

[5]

R. Devaney, "An Introduction to Chaotic Dynamical Systems,'', Benjamin-Cummings, (1986).   Google Scholar

[6]

J. J. Duistermaat, On global action-angle coordinates,, Comm. Pure Appl. Math., 33 (1980), 687.  doi: 10.1002/cpa.3160330602.  Google Scholar

[7]

K. Efstathiou, R. H. Cushman and D. A. Sadovskií, Fractional monodromy in the 1:-2 resonance,, Advances in Mathematics, 209 (2007), 241.  doi: 10.1016/j.aim.2006.05.006.  Google Scholar

[8]

A. Giacobbe, Fractional monodromy: Parallel transport of homology cycles,, Diff. Geom. and Appl., 26 (2008), 140.  doi: 10.1016/j.difgeo.2007.11.011.  Google Scholar

[9]

O. V. Lukina, "Geometry of Torus Bundles in Integrable Hamiltonian Systems,'', Ph.D thesis, (2008).   Google Scholar

[10]

O. V. Lukina, F. Takens and H. W. Broer, Global properties of integrable Hamiltonian systems,, Regular and Chaotic Dynamics, 13 (2008), 602.  doi: 10.1134/S1560354708060105.  Google Scholar

[11]

N. N. Nekhoroshev, Action-angle variables and their generalizations,, Trans. Moscow Math. Soc., 26 (1972), 180.   Google Scholar

[12]

N. N. Nekhoroshev, Fractional monodromy in the case of arbitrary resonances,, Sbornik: Mathematics, 198 (2007), 383.  doi: 10.1070/SM2007v198n03ABEH003841.  Google Scholar

[13]

N. N. Nekhoroshev, Fuzzy fractional monodromy and the section-hyperboloid,, Milan J. Math., 76 (2008), 1.  doi: 10.1007/s00032-008-0085-0.  Google Scholar

[14]

N. N. Nekhoroshev, D. A. Sadovskií and B. I. Zhilinskií, Fractional monodromy of resonant classical and quantum oscillators,, Comptes Rendus Acad. Sci. Paris, 335 (2002), 985.   Google Scholar

[15]

N. N. Nekhoroshev, D. A. Sadovskií and B. I. Zhilinskií, Fractional Hamiltonian monodromy,, Annales Henri Poincaré, 7 (2006), 1099.  doi: 10.1007/s00023-006-0278-4.  Google Scholar

[16]

D. Sugny, P. Mardešić, M. Pelletier, A. Jebrane and H. R. Jauslin, Fractional Hamiltonian monodromy from a Gauss-Manin monodromy,, J. Math. Phys., 49 (2008), 042701.  doi: 10.1063/1.2863614.  Google Scholar

[17]

San Vũ Ngoc, Quantum monodromy in integrable systems,, Communications in Mathematical Physics, 203 (1999), 465.  doi: 10.1007/s002200050621.  Google Scholar

[18]

N. T. Zung, A note on focus-focus singularities,, Diff. Geom. and Appl., 7 (1997), 123.  doi: 10.1016/S0926-2245(96)00042-3.  Google Scholar

[19]

Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems, I: Arnold-Liouville with singularities,, Comp. Math., 101 (1996), 179.   Google Scholar

show all references

References:
[1]

Y. Colin de Verdière and San Vũ Ngoc, Singular Bohr-Sommerfeld rules for 2D integrable systems,, Ann. Sci. Éc. Norm. Sup., 36 (2003), 1.   Google Scholar

[2]

R. H. Cushman and J. J. Duistermaat, Non-Hamiltonian monodromy,, J. Diff. Eqs., 172 (2001), 42.  doi: 10.1006/jdeq.2000.3852.  Google Scholar

[3]

R. H. Cushman, H. Dullin, H. Hanßmann and S. Schmidt, The 1:±2 resonance,, Regular and Chaotic Dynamics, 12 (2007), 642.  doi: 10.1134/S156035470706007X.  Google Scholar

[4]

R. H. Cushman and San Vũ Ngoc, Sign of the monodromy for Liouville integrable systems,, Annales Henri Poincaré, 3 (2002), 883.  doi: 10.1007/s00023-002-8640-7.  Google Scholar

[5]

R. Devaney, "An Introduction to Chaotic Dynamical Systems,'', Benjamin-Cummings, (1986).   Google Scholar

[6]

J. J. Duistermaat, On global action-angle coordinates,, Comm. Pure Appl. Math., 33 (1980), 687.  doi: 10.1002/cpa.3160330602.  Google Scholar

[7]

K. Efstathiou, R. H. Cushman and D. A. Sadovskií, Fractional monodromy in the 1:-2 resonance,, Advances in Mathematics, 209 (2007), 241.  doi: 10.1016/j.aim.2006.05.006.  Google Scholar

[8]

A. Giacobbe, Fractional monodromy: Parallel transport of homology cycles,, Diff. Geom. and Appl., 26 (2008), 140.  doi: 10.1016/j.difgeo.2007.11.011.  Google Scholar

[9]

O. V. Lukina, "Geometry of Torus Bundles in Integrable Hamiltonian Systems,'', Ph.D thesis, (2008).   Google Scholar

[10]

O. V. Lukina, F. Takens and H. W. Broer, Global properties of integrable Hamiltonian systems,, Regular and Chaotic Dynamics, 13 (2008), 602.  doi: 10.1134/S1560354708060105.  Google Scholar

[11]

N. N. Nekhoroshev, Action-angle variables and their generalizations,, Trans. Moscow Math. Soc., 26 (1972), 180.   Google Scholar

[12]

N. N. Nekhoroshev, Fractional monodromy in the case of arbitrary resonances,, Sbornik: Mathematics, 198 (2007), 383.  doi: 10.1070/SM2007v198n03ABEH003841.  Google Scholar

[13]

N. N. Nekhoroshev, Fuzzy fractional monodromy and the section-hyperboloid,, Milan J. Math., 76 (2008), 1.  doi: 10.1007/s00032-008-0085-0.  Google Scholar

[14]

N. N. Nekhoroshev, D. A. Sadovskií and B. I. Zhilinskií, Fractional monodromy of resonant classical and quantum oscillators,, Comptes Rendus Acad. Sci. Paris, 335 (2002), 985.   Google Scholar

[15]

N. N. Nekhoroshev, D. A. Sadovskií and B. I. Zhilinskií, Fractional Hamiltonian monodromy,, Annales Henri Poincaré, 7 (2006), 1099.  doi: 10.1007/s00023-006-0278-4.  Google Scholar

[16]

D. Sugny, P. Mardešić, M. Pelletier, A. Jebrane and H. R. Jauslin, Fractional Hamiltonian monodromy from a Gauss-Manin monodromy,, J. Math. Phys., 49 (2008), 042701.  doi: 10.1063/1.2863614.  Google Scholar

[17]

San Vũ Ngoc, Quantum monodromy in integrable systems,, Communications in Mathematical Physics, 203 (1999), 465.  doi: 10.1007/s002200050621.  Google Scholar

[18]

N. T. Zung, A note on focus-focus singularities,, Diff. Geom. and Appl., 7 (1997), 123.  doi: 10.1016/S0926-2245(96)00042-3.  Google Scholar

[19]

Nguyen Tien Zung, Symplectic topology of integrable Hamiltonian systems, I: Arnold-Liouville with singularities,, Comp. Math., 101 (1996), 179.   Google Scholar

[1]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[2]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[3]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[4]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[5]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[6]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[7]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[8]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[9]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[10]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[11]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[12]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[13]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[14]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[15]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020027

[16]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[17]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[18]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[19]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[20]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (5)

[Back to Top]