\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Some KAM applications to Celestial Mechanics

Abstract Related Papers Cited by
  • The existence of invariant tori in Celestial Mechanics has been widely investigated through implementations of the Kolmogorov-Arnold-Moser (KAM) theory. We provide an introduction to some results on the existence of maximal and low-dimensional, rotational and librational tori for models of Celestial Mechanics: from the spin--orbit problem to the three-body and planetary models. We also briefly review a result on dissipative invariant attractors for the spin-orbit problem, whose existence is proven through a dissipative KAM theorem.
    Mathematics Subject Classification: Primary: 70E50, 37N05, 70F15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk, 18 (1963), 91-192.

    [2]

    V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, "Mathematical Aspects of Classical and Celestial Mechanics," Encyclopaedia of Mathematical Sciences 3, Dynamical Systems III, Third edition, Springer-Verlag, Berlin, 2006.

    [3]

    A. Berretti, A. Celletti, L. Chierchia and C. Falcolini, Natural boundaries for area-preserving twist maps, J. Stat. Phys., 66 (1992), 1613-1630.doi: 10.1007/BF01054437.

    [4]

    L. Biasco, L. Chierchia and E. Valdinoci, Elliptic two-dimensional invariant tori for the planetary three-body problem, Arch. Rational Mech. Anal., 170 (2003), 91-135.doi: 10.1007/s00205-003-0269-2.

    [5]

    L. Biasco, L. Chierchia and E. Valdinoci, $N$-dimensional elliptic invariant tori for the planar $(N+1)$-body problem, SIAM Journal on Mathematical Analysis, 37 (2006), 1560-1588.doi: 10.1137/S0036141004443646.

    [6]

    H. W. Broer, G. B. Huitema and M. B. Sevryuk, "Quasi-Periodic Motions in Families of Dynamical Systems. Order amidst Chaos," Lecture Notes in Mathematics 1645, Springer-Verlag, Berlin, 1996.

    [7]

    H. W. Broer, C. Simó and J. C. Tatjer, Towards global models near homoclinic tangencies of dissipative diffeomorphisms, Nonlinearity, 11 (1998), 667-770.doi: 10.1088/0951-7715/11/3/015.

    [8]

    A. Celletti, Analysis of resonances in the spin-orbit problem in celestial mechanics: The synchronous resonance (Part I), J. of Applied Math. and Physics (ZAMP), 41 (1990), 174-204.

    [9]

    A. Celletti, Construction of librational invariant tori in the spin-orbit problem, J. of Applied Math. and Physics (ZAMP), 45 (1994), 61-80.doi: 10.1007/BF00942847.

    [10]

    A. Celletti and L. Chierchia, "KAM Stability and Celestial Mechanics," Memoirs American Mathematical Society, 187 (2007).

    [11]

    A. Celletti and L. Chierchia, Quasi-periodic attractors in celestial mechanics, Arch. Rational Mech. Anal., 191 (2009), 311-345.doi: 10.1007/s00205-008-0141-5.

    [12]

    J. Féjoz, Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman), Ergod. Th. Dynam. Sys., 24 (2004), 1521-1582.

    [13]

    A. Giorgilli, U. Locatelli and M. Sansottera, Kolmogorov and Nekhoroshev theory for the problem of three bodies, Celest. Mech. Dyn. Astr., 104 (2009), 159-173.doi: 10.1007/s10569-009-9192-7.

    [14]

    J. M. Greene, A method for determining a stochastic transition, J. Math. Phys., 20 (1979), 1183-1201.doi: 10.1063/1.524170.

    [15]

    M. Hénon, Exploration numérique du problème restreint IV: Masses égales, orbites non périodiques, Bulletin Astronomique, fasc. 2, 3 (1966), 49-66.

    [16]

    A. Ya. Khinchin, "Continued Fractions," The University of Chicago Press, Chicago-London, 1964.

    [17]

    A. N. Kolmogorov, On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian, Dokl. Akad. Nauk SSSR, 98 (1954), 527-530.

    [18]

    W. H. Jefferys and J. Moser, Quasi-periodic solutions for the three-body problem, Astron. J., 71 (1966), 568-578.doi: 10.1086/109964.

    [19]

    À. Jorba and J. Villanueva, Effective stability around periodic orbits of the spatial RTBP, In: Hamiltonian Systems with Three or More Degrees of Freedom, NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci. 533, C. Simó ed., Kluwer Acad. Publ., Dordrecht, (1999), 628-632.

    [20]

    J. Laskar and P. Robutel, Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian, Celest. Mech. Dyn. Astr., 62 (1995), 193-217.doi: 10.1007/BF00692088.

    [21]

    P. Le Calvez, Existence d'orbites quasi-périodiques dans les attracteurs de Birkhoff, Comm. Math. Phys., 106 (1986), 383-394.doi: 10.1007/BF01207253.

    [22]

    B. B. Lieberman, Existence of quasi-periodic solutions to the three-body problem, Celestial Mechanics, 3 (1971), 408-426.doi: 10.1007/BF01227790.

    [23]

    R. de la Llave and C. E. Wayne, Whiskered and low dimensional tori in nearly integrable Hamiltonian systems, MPEJ, 10 (2004).

    [24]

    U. Locatelli and A. Giorgilli, Invariant tori in the secular motions of the three-body planetary systems, Celest. Mech. Dyn. Astr., 78 (2000), 47-74.doi: 10.1023/A:1011139523256.

    [25]

    U. Locatelli and A. Giorgilli, Construction of Kolmogorov's normal form for a planetary system, Reg. Chaotic Dyn., 10 (2005), 153-171.doi: 10.1070/RD2005v010n02ABEH000309.

    [26]

    J. Moser, On invariant curves of area-preserving mappings of an annulus, Nach. Akad. Wiss. Göttingen, Math.-Phys. Kl. II, (1962), 1-20.

    [27]

    G. Pinzari, "On the Kolmogorov set for Many-Body Problems," Ph.D. Thesis, Università Roma Tre 2009.

    [28]

    P. Robutel, Stability of the planetary three-body problem. II. KAM theory and existence of quasi-periodic motions, Celest. Mech. Dyn. Astr., 62 (1995), 219-261.doi: 10.1007/BF00692089.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(250) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return