December  2010, 3(4): 545-578. doi: 10.3934/dcdss.2010.3.545

Properly-degenerate KAM theory (following V. I. Arnold)

1. 

Dipartimento di Matematica, Università "Roma Tre", Largo S. L. Murialdo 1, 00146 Roma

2. 

Dipartimento di Matematica ed Applicazioni "R. Caccioppoli”, Università di Napoli "Federico II”, Monte Sant’Angelo – Via Cinthia I-80126 Napoli, Italy

Received  April 2009 Revised  May 2010 Published  August 2010

Arnold's "Fundamental Theorem'' on properly-degenerate systems [3, Chapter IV] is revisited and improved with particular attention to the relation between the perturbative parameters and to the measure of the Kolmogorov set. Relations with the planetary many-body problem are shortly discussed.
Citation: Luigi Chierchia, Gabriella Pinzari. Properly-degenerate KAM theory (following V. I. Arnold). Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 545-578. doi: 10.3934/dcdss.2010.3.545
References:
[1]

K. Abdullah and A. Albouy, On a strange resonance noticed by M. Herman,, Regul. Chaotic Dyn., 6 (2001), 421.  doi: 10.1070/RD2001v006n04ABEH000186.  Google Scholar

[2]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,'', Translated from the Russian by K. Vogtmann and A. Weinstein, (1989).   Google Scholar

[3]

V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics,, (Russian) Uspehi Mat. Nauk, 18 (1963), 91.   Google Scholar

[4]

L. Biasco, L. Chierchia and E. Valdinoci, Elliptic two-dimensional invariant tori for the planetary three-body problem,, Arch. Rational Mech. Anal., 170 (2003), 91.  doi: 10.1007/s00205-003-0269-2.  Google Scholar

[5]

A. Celletti and L. Chierchia, KAM stability and celestial mechanics,, Mem. Amer. Math. Soc., 187 (2007).   Google Scholar

[6]

L. Chierchia and F. Pusateri, Analytic Lagrangian tori for the planetary many-body problem,, Ergodic Theory Dynam. Systems, 29 (2009), 849.  doi: 10.1017/S0143385708000503.  Google Scholar

[7]

A. Deprit, Elimination of the nodes in problems of $n$ bodies,, Celestial Mech., 30 (1983), 181.  doi: 10.1007/BF01234305.  Google Scholar

[8]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,'', Studies in Advanced Mathematics. CRC Press, (1992).   Google Scholar

[9]

H. Federer, "Geometric Measure Theory,'', Die Grundlehren der mathematischen Wissenschaften, (1969).   Google Scholar

[10]

J. Féjoz, Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman),, (French)Ergodic Theory Dynam. Systems, 24 (2004), 1521.   Google Scholar

[11]

H. Hofer, E. Zehnder, "Symplectic Invariants and Hamiltonian Dynamics,'', Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, (1994).   Google Scholar

[12]

U. Locatelli and A. Giorgilli, Invariant tori in the Sun-Jupiter-Saturn system,, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 377.   Google Scholar

[13]

G. Pinzari, "On the Kolmogorov Set for Many-Body Problems,", PhD thesis, (2009).   Google Scholar

[14]

J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems,, Math. Z., 213 (1993), 187.  doi: 10.1007/BF03025718.  Google Scholar

[15]

P. Robutel, Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions,, Celestial Mech. Dynam. Astronom., 62 (1995), 219.  doi: 10.1007/BF00692089.  Google Scholar

[16]

H. Rüssmann, Nondegeneracy in the perturbation theory of integrable dynamical systems,, Stochastics, (1988), 211.   Google Scholar

[17]

M. B. Sevryuk, The classical KAM theory at the dawn of the twenty-first century,, Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday, 3 (2003), 1113.   Google Scholar

[18]

J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems,, Amer. J. Math., 58 (1936), 141.  doi: 10.2307/2371062.  Google Scholar

show all references

References:
[1]

K. Abdullah and A. Albouy, On a strange resonance noticed by M. Herman,, Regul. Chaotic Dyn., 6 (2001), 421.  doi: 10.1070/RD2001v006n04ABEH000186.  Google Scholar

[2]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,'', Translated from the Russian by K. Vogtmann and A. Weinstein, (1989).   Google Scholar

[3]

V. I. Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics,, (Russian) Uspehi Mat. Nauk, 18 (1963), 91.   Google Scholar

[4]

L. Biasco, L. Chierchia and E. Valdinoci, Elliptic two-dimensional invariant tori for the planetary three-body problem,, Arch. Rational Mech. Anal., 170 (2003), 91.  doi: 10.1007/s00205-003-0269-2.  Google Scholar

[5]

A. Celletti and L. Chierchia, KAM stability and celestial mechanics,, Mem. Amer. Math. Soc., 187 (2007).   Google Scholar

[6]

L. Chierchia and F. Pusateri, Analytic Lagrangian tori for the planetary many-body problem,, Ergodic Theory Dynam. Systems, 29 (2009), 849.  doi: 10.1017/S0143385708000503.  Google Scholar

[7]

A. Deprit, Elimination of the nodes in problems of $n$ bodies,, Celestial Mech., 30 (1983), 181.  doi: 10.1007/BF01234305.  Google Scholar

[8]

L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions,'', Studies in Advanced Mathematics. CRC Press, (1992).   Google Scholar

[9]

H. Federer, "Geometric Measure Theory,'', Die Grundlehren der mathematischen Wissenschaften, (1969).   Google Scholar

[10]

J. Féjoz, Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman),, (French)Ergodic Theory Dynam. Systems, 24 (2004), 1521.   Google Scholar

[11]

H. Hofer, E. Zehnder, "Symplectic Invariants and Hamiltonian Dynamics,'', Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, (1994).   Google Scholar

[12]

U. Locatelli and A. Giorgilli, Invariant tori in the Sun-Jupiter-Saturn system,, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 377.   Google Scholar

[13]

G. Pinzari, "On the Kolmogorov Set for Many-Body Problems,", PhD thesis, (2009).   Google Scholar

[14]

J. Pöschel, Nekhoroshev estimates for quasi-convex Hamiltonian systems,, Math. Z., 213 (1993), 187.  doi: 10.1007/BF03025718.  Google Scholar

[15]

P. Robutel, Stability of the planetary three-body problem. II. KAM theory and existence of quasiperiodic motions,, Celestial Mech. Dynam. Astronom., 62 (1995), 219.  doi: 10.1007/BF00692089.  Google Scholar

[16]

H. Rüssmann, Nondegeneracy in the perturbation theory of integrable dynamical systems,, Stochastics, (1988), 211.   Google Scholar

[17]

M. B. Sevryuk, The classical KAM theory at the dawn of the twenty-first century,, Dedicated to Vladimir Igorevich Arnold on the occasion of his 65th birthday, 3 (2003), 1113.   Google Scholar

[18]

J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems,, Amer. J. Math., 58 (1936), 141.  doi: 10.2307/2371062.  Google Scholar

[1]

Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463

[2]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[3]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[4]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[5]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[6]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[7]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[8]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[9]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[10]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[11]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[12]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[13]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[14]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[15]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[16]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]