-
Previous Article
Convergence radius in the Poincaré-Siegel problem
- DCDS-S Home
- This Issue
-
Next Article
Properly-degenerate KAM theory (following V. I. Arnold)
Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$
1. | School of Mathematical Sciences, Fudan University, Shanghai 200433, China, China, China |
References:
[1] |
K. W. Chung and X. Yuan, Periodic and quasi-periodic solutions for the complex Ginzburg-Landau equation,, Nonlinearity, 21 (2008), 435.
doi: 10.1088/0951-7715/21/3/004. |
[2] |
H. Cong, J. Liu and X. Yuan, Quasiperiodic solutions for the cubic complex Ginzburg-Landau equation,, J. Math. Physics, 50 (2009).
doi: 10.1063/1.3157213. |
[3] |
C. D. Levermore and M. Oliver, The complex Ginzburg-Landau equation as a model problem,, in, 31 ().
|
[4] |
Zh. Liang, Quasi-periodic solutions for $1D$ Schrödinger equation with the nonlinearity $|u|^{2p}u$,, J. Differential Equations, 244 (2008), 2185.
doi: 10.1016/j.jde.2008.02.015. |
[5] |
B. P. Luce, Homoclinic explosions in the complex Ginzburg-Landau equation,, Physica D, 84 (1995), 553.
doi: 10.1016/0167-2789(95)00047-8. |
[6] |
S. C. Mancas and S. R. Choudhury, Bifurcations of plane wave (CW) solutions in the complex cubic-quintic Ginzburg-Landau equation,, Math. Comput. Simul., 74 (2007), 266.
doi: 10.1016/j.matcom.2006.10.009. |
[7] |
G. Cruz-Pacheco, C. D. Levermore and B. P. Luce, Complex Ginzburg-Landau equations as perturbations of nonlinear Schrödinger equations: A Melnikov approach,, Physica D, 197 (2004), 269.
doi: 10.1016/j.physd.2004.07.012. |
[8] |
J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation,, Comment. Math. Helv., 71 (1996), 269.
doi: 10.1007/BF02566420. |
[9] |
P. Takáč, Invariant $2$-tori in the time-dependent Ginzburg-Landau equation,, Nonlinearity, 5 (1992), 289.
doi: 10.1088/0951-7715/5/2/002. |
[10] |
C. Valls, Quasiperiodic solutions for dissipative Boussinesq systems,, Comm. Math. Phys., 265 (2006), 305.
doi: 10.1007/s00220-006-0026-0. |
[11] |
X. Yuan, Quasi-periodic solutions of nonlinear Schrödinger equations of higher dimension,, J. Differential Equations, 195 (2003), 230.
doi: 10.1016/S0022-0396(03)00095-0. |
[12] |
X. Yuan, A KAM theorem with applications to partial differential equations of higher dimensions,, Comm. Math. Phys., 275 (2007), 97.
doi: 10.1007/s00220-007-0287-2. |
show all references
References:
[1] |
K. W. Chung and X. Yuan, Periodic and quasi-periodic solutions for the complex Ginzburg-Landau equation,, Nonlinearity, 21 (2008), 435.
doi: 10.1088/0951-7715/21/3/004. |
[2] |
H. Cong, J. Liu and X. Yuan, Quasiperiodic solutions for the cubic complex Ginzburg-Landau equation,, J. Math. Physics, 50 (2009).
doi: 10.1063/1.3157213. |
[3] |
C. D. Levermore and M. Oliver, The complex Ginzburg-Landau equation as a model problem,, in, 31 ().
|
[4] |
Zh. Liang, Quasi-periodic solutions for $1D$ Schrödinger equation with the nonlinearity $|u|^{2p}u$,, J. Differential Equations, 244 (2008), 2185.
doi: 10.1016/j.jde.2008.02.015. |
[5] |
B. P. Luce, Homoclinic explosions in the complex Ginzburg-Landau equation,, Physica D, 84 (1995), 553.
doi: 10.1016/0167-2789(95)00047-8. |
[6] |
S. C. Mancas and S. R. Choudhury, Bifurcations of plane wave (CW) solutions in the complex cubic-quintic Ginzburg-Landau equation,, Math. Comput. Simul., 74 (2007), 266.
doi: 10.1016/j.matcom.2006.10.009. |
[7] |
G. Cruz-Pacheco, C. D. Levermore and B. P. Luce, Complex Ginzburg-Landau equations as perturbations of nonlinear Schrödinger equations: A Melnikov approach,, Physica D, 197 (2004), 269.
doi: 10.1016/j.physd.2004.07.012. |
[8] |
J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation,, Comment. Math. Helv., 71 (1996), 269.
doi: 10.1007/BF02566420. |
[9] |
P. Takáč, Invariant $2$-tori in the time-dependent Ginzburg-Landau equation,, Nonlinearity, 5 (1992), 289.
doi: 10.1088/0951-7715/5/2/002. |
[10] |
C. Valls, Quasiperiodic solutions for dissipative Boussinesq systems,, Comm. Math. Phys., 265 (2006), 305.
doi: 10.1007/s00220-006-0026-0. |
[11] |
X. Yuan, Quasi-periodic solutions of nonlinear Schrödinger equations of higher dimension,, J. Differential Equations, 195 (2003), 230.
doi: 10.1016/S0022-0396(03)00095-0. |
[12] |
X. Yuan, A KAM theorem with applications to partial differential equations of higher dimensions,, Comm. Math. Phys., 275 (2007), 97.
doi: 10.1007/s00220-007-0287-2. |
[1] |
Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104 |
[2] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[3] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[4] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[5] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[6] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[7] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[8] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[9] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[10] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]