\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$

Abstract Related Papers Cited by
  • In this paper we prove that there is a Cantorian branch of 2-dimensional KAM invariant tori for the complex Ginzburg-Landau equation with the nonlinearity $|u|^{2p}u,\ p\geq1$.
    Mathematics Subject Classification: Primary: 37K55; Secondary: 35Q56, 35K55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. W. Chung and X. Yuan, Periodic and quasi-periodic solutions for the complex Ginzburg-Landau equation, Nonlinearity, 21 (2008), 435-451.doi: 10.1088/0951-7715/21/3/004.

    [2]

    H. Cong, J. Liu and X. Yuan, Quasiperiodic solutions for the cubic complex Ginzburg-Landau equation, J. Math. Physics, 50 (2009), 063516.doi: 10.1063/1.3157213.

    [3]

    C. D. Levermore and M. OliverThe complex Ginzburg-Landau equation as a model problem, in "Dynamical Systems and Probabilistic Methods in Partial Differential Equations,'' Lectures in Applied Math., 31 (eds. P. Deift, C. D. Levermore and C. E. Wayne),

    [4]

    Zh. Liang, Quasi-periodic solutions for $1D$ Schrödinger equation with the nonlinearity $|u|^{2p}u$, J. Differential Equations, 244 (2008), 2185-2225.doi: 10.1016/j.jde.2008.02.015.

    [5]

    B. P. Luce, Homoclinic explosions in the complex Ginzburg-Landau equation, Physica D, 84 (1995), 553-581.doi: 10.1016/0167-2789(95)00047-8.

    [6]

    S. C. Mancas and S. R. Choudhury, Bifurcations of plane wave (CW) solutions in the complex cubic-quintic Ginzburg-Landau equation, Math. Comput. Simul., 74 (2007), 266-280.doi: 10.1016/j.matcom.2006.10.009.

    [7]

    G. Cruz-Pacheco, C. D. Levermore and B. P. Luce, Complex Ginzburg-Landau equations as perturbations of nonlinear Schrödinger equations: A Melnikov approach, Physica D, 197 (2004), 269-285.doi: 10.1016/j.physd.2004.07.012.

    [8]

    J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., 71 (1996), 269-296.doi: 10.1007/BF02566420.

    [9]

    P. Takáč, Invariant $2$-tori in the time-dependent Ginzburg-Landau equation, Nonlinearity, 5 (1992), 289-321.doi: 10.1088/0951-7715/5/2/002.

    [10]

    C. Valls, Quasiperiodic solutions for dissipative Boussinesq systems, Comm. Math. Phys., 265 (2006), 305-331.doi: 10.1007/s00220-006-0026-0.

    [11]

    X. Yuan, Quasi-periodic solutions of nonlinear Schrödinger equations of higher dimension, J. Differential Equations, 195 (2003), 230-242.doi: 10.1016/S0022-0396(03)00095-0.

    [12]

    X. Yuan, A KAM theorem with applications to partial differential equations of higher dimensions, Comm. Math. Phys., 275 (2007), 97-137.doi: 10.1007/s00220-007-0287-2.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(90) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return