December  2010, 3(4): 623-641. doi: 10.3934/dcdss.2010.3.623

Convergence of differentiable functions on closed sets and remarks on the proofs of the "Converse Approximation Lemmas''

1. 

Department of Mathematics, Hunan Normal University, Changsha 410081, China

2. 

School of Mathematics, Georgia Institute of Technology, 686 Cherry St., Atlanta, GA 30332-0160, United States

Received  March 2009 Revised  June 2010 Published  August 2010

In KAM theory and other areas of analysis, one is often led to consider sums of functions defined in decreasing domains. A question of interest is whether the limit function is differentiable or not.
   We present examples showing that the answer cannot be based just on the size of the derivatives but that it also has to include considerations of the geometry of the domains.
   We also present some sufficient conditions on the geometry of the domains that ensure that indeed the sum of the derivatives is a Whitney derivative of the sum of the functions.
Citation: Xuemei Li, Rafael de la Llave. Convergence of differentiable functions on closed sets and remarks on the proofs of the "Converse Approximation Lemmas''. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 623-641. doi: 10.3934/dcdss.2010.3.623
References:
[1]

R. Abraham and J. Robbin, "Transversal Mappings and Flows,'', W.A. Benjamin, (1967).   Google Scholar

[2]

V. I. Arnol$'$d, Proof of a theorem by A.N. Kolmogorov on the persistence of conditionally periodic motions under a small perturbation of the Hamiltonian,, Russian Math. Surveys, 18 (1963), 9.  doi: 10.1070/RM1963v018n05ABEH004130.  Google Scholar

[3]

L. Chierchia and G. Gallavotti, Smooth prime integrals for quasi-integrable Hamiltonian systems,, Nuovo Cimento B (11), 67 (1982), 277.  doi: 10.1007/BF02721167.  Google Scholar

[4]

R. de la Llave, Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems,, Comm. Math. Phys., 150 (1992), 289.  doi: 10.1007/BF02096662.  Google Scholar

[5]

R. de la Llave and R. Obaya, Regularity of the composition operator in spaces of Hölder functions,, Discrete Contin. Dynam. Systems, 5 (1999), 157.   Google Scholar

[6]

C. Fefferman, Interpolation and extrapolation of smooth functions by linear operators,, Rev. Mat. Iberoam., 21 (2005), 313.   Google Scholar

[7]

C. Fefferman, The structure of linear extension operators for $C^m$,, Rev. Mat. Iberoam., 23 (2007), 269.   Google Scholar

[8]

C. Fefferman, $C^m$ extension by linear operators,, Ann. of Math. (2), 166 (2007), 779.  doi: 10.4007/annals.2007.166.779.  Google Scholar

[9]

C. Fefferman, Extension of $C^{m,\omega}$-smooth functions by linear operators,, Rev. Mat. Iberoam., 25 (2009), 1.   Google Scholar

[10]

C. Fefferman, Whitney's extension problems and interpolation of data,, Bull. Amer. Math. Soc. (N.S.), 46 (2009), 207.   Google Scholar

[11]

G. Gallavotti, Perturbation theory for classical Hamiltonian systems,, in, 7 (1981), 359.   Google Scholar

[12]

L. Grafakos, "Classical and Modern Fourier Analysis,'', Pearson Education, (2004).   Google Scholar

[13]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'', Encyclopedia of Mathematics and its Applications, 54 (1995).   Google Scholar

[14]

M. Nicol and A. Török, Whitney regularity for solutions to the coboundary equation on Cantor sets,, Math. Phys. Electron. J., 13 (2007).   Google Scholar

[15]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. I. Birkhoff normal forms,, Ann. Henri Poincaré, 1 (2000), 223.  doi: 10.1007/PL00001004.  Google Scholar

[16]

G. Popov, KAM theorem for Gevrey Hamiltonians,, Ergodic Theory Dynam. Systems, 24 (2004), 1753.  doi: 10.1017/S0143385704000458.  Google Scholar

[17]

G. Popov, KAM theorem and quasimodes for Gevrey Hamiltonians,, Mat. Contemp., 26 (2004), 87.   Google Scholar

[18]

J. Pöschel, Integrability of Hamiltonian systems on Cantor sets,, Comm. Pure Appl. Math., 35 (1982), 653.  doi: 10.1002/cpa.3160350504.  Google Scholar

[19]

J. Pöschel, On elliptic lower-dimensional tori in Hamiltonian systems,, Math. Z., 202 (1989), 559.  doi: 10.1007/BF01221590.  Google Scholar

[20]

M. Shub, "Global Stability of Dynamical Systems,'', Springer-Verlag, (1987).   Google Scholar

[21]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,'', Princeton Mathematical Series, 30 (1970).   Google Scholar

[22]

J. A. Vano, "A Nash-Moser Implicit Function Theorem with Whitney Regularity and Applications,'', Ph.D thesis, (2002), 02.   Google Scholar

[23]

F. Wagener, A note on Gevrey regular KAM theory and the inverse approximation lemma,, Dyn. Syst., 18 (2003), 159.  doi: 10.1080/1468936031000117857.  Google Scholar

[24]

H. Whitney, Analytic extensions of differentiable functions defined in closed sets,, Trans. Amer. Math. Soc., 36 (1934), 63.   Google Scholar

[25]

H. Whitney, Differentiable functions defined in arbitrary subsets of Euclidean space,, Trans. Amer. Math. Soc., 40 (1936), 309.   Google Scholar

[26]

J. Xu and J. You, Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann's non-degeneracy condition,, J. Differential Equations, 235 (2007), 609.  doi: 10.1016/j.jde.2006.12.001.  Google Scholar

[27]

X. Yuan, Construction of quasi-periodic breathers via KAM technique,, Comm. Math. Phys., 226 (2002), 61.  doi: 10.1007/s002200100593.  Google Scholar

[28]

X. Yuan, Quasi-periodic solutions of completely resonant nonlinear wave equations,, J. Differential Equations, 230 (2006), 213.  doi: 10.1016/j.jde.2005.12.012.  Google Scholar

[29]

E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. I,, Comm. Pure Appl. Math., 28 (1975), 91.   Google Scholar

show all references

References:
[1]

R. Abraham and J. Robbin, "Transversal Mappings and Flows,'', W.A. Benjamin, (1967).   Google Scholar

[2]

V. I. Arnol$'$d, Proof of a theorem by A.N. Kolmogorov on the persistence of conditionally periodic motions under a small perturbation of the Hamiltonian,, Russian Math. Surveys, 18 (1963), 9.  doi: 10.1070/RM1963v018n05ABEH004130.  Google Scholar

[3]

L. Chierchia and G. Gallavotti, Smooth prime integrals for quasi-integrable Hamiltonian systems,, Nuovo Cimento B (11), 67 (1982), 277.  doi: 10.1007/BF02721167.  Google Scholar

[4]

R. de la Llave, Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems,, Comm. Math. Phys., 150 (1992), 289.  doi: 10.1007/BF02096662.  Google Scholar

[5]

R. de la Llave and R. Obaya, Regularity of the composition operator in spaces of Hölder functions,, Discrete Contin. Dynam. Systems, 5 (1999), 157.   Google Scholar

[6]

C. Fefferman, Interpolation and extrapolation of smooth functions by linear operators,, Rev. Mat. Iberoam., 21 (2005), 313.   Google Scholar

[7]

C. Fefferman, The structure of linear extension operators for $C^m$,, Rev. Mat. Iberoam., 23 (2007), 269.   Google Scholar

[8]

C. Fefferman, $C^m$ extension by linear operators,, Ann. of Math. (2), 166 (2007), 779.  doi: 10.4007/annals.2007.166.779.  Google Scholar

[9]

C. Fefferman, Extension of $C^{m,\omega}$-smooth functions by linear operators,, Rev. Mat. Iberoam., 25 (2009), 1.   Google Scholar

[10]

C. Fefferman, Whitney's extension problems and interpolation of data,, Bull. Amer. Math. Soc. (N.S.), 46 (2009), 207.   Google Scholar

[11]

G. Gallavotti, Perturbation theory for classical Hamiltonian systems,, in, 7 (1981), 359.   Google Scholar

[12]

L. Grafakos, "Classical and Modern Fourier Analysis,'', Pearson Education, (2004).   Google Scholar

[13]

A. Katok and B. Hasselblatt, "Introduction to the Modern Theory of Dynamical Systems,'', Encyclopedia of Mathematics and its Applications, 54 (1995).   Google Scholar

[14]

M. Nicol and A. Török, Whitney regularity for solutions to the coboundary equation on Cantor sets,, Math. Phys. Electron. J., 13 (2007).   Google Scholar

[15]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. I. Birkhoff normal forms,, Ann. Henri Poincaré, 1 (2000), 223.  doi: 10.1007/PL00001004.  Google Scholar

[16]

G. Popov, KAM theorem for Gevrey Hamiltonians,, Ergodic Theory Dynam. Systems, 24 (2004), 1753.  doi: 10.1017/S0143385704000458.  Google Scholar

[17]

G. Popov, KAM theorem and quasimodes for Gevrey Hamiltonians,, Mat. Contemp., 26 (2004), 87.   Google Scholar

[18]

J. Pöschel, Integrability of Hamiltonian systems on Cantor sets,, Comm. Pure Appl. Math., 35 (1982), 653.  doi: 10.1002/cpa.3160350504.  Google Scholar

[19]

J. Pöschel, On elliptic lower-dimensional tori in Hamiltonian systems,, Math. Z., 202 (1989), 559.  doi: 10.1007/BF01221590.  Google Scholar

[20]

M. Shub, "Global Stability of Dynamical Systems,'', Springer-Verlag, (1987).   Google Scholar

[21]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,'', Princeton Mathematical Series, 30 (1970).   Google Scholar

[22]

J. A. Vano, "A Nash-Moser Implicit Function Theorem with Whitney Regularity and Applications,'', Ph.D thesis, (2002), 02.   Google Scholar

[23]

F. Wagener, A note on Gevrey regular KAM theory and the inverse approximation lemma,, Dyn. Syst., 18 (2003), 159.  doi: 10.1080/1468936031000117857.  Google Scholar

[24]

H. Whitney, Analytic extensions of differentiable functions defined in closed sets,, Trans. Amer. Math. Soc., 36 (1934), 63.   Google Scholar

[25]

H. Whitney, Differentiable functions defined in arbitrary subsets of Euclidean space,, Trans. Amer. Math. Soc., 40 (1936), 309.   Google Scholar

[26]

J. Xu and J. You, Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann's non-degeneracy condition,, J. Differential Equations, 235 (2007), 609.  doi: 10.1016/j.jde.2006.12.001.  Google Scholar

[27]

X. Yuan, Construction of quasi-periodic breathers via KAM technique,, Comm. Math. Phys., 226 (2002), 61.  doi: 10.1007/s002200100593.  Google Scholar

[28]

X. Yuan, Quasi-periodic solutions of completely resonant nonlinear wave equations,, J. Differential Equations, 230 (2006), 213.  doi: 10.1016/j.jde.2005.12.012.  Google Scholar

[29]

E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. I,, Comm. Pure Appl. Math., 28 (1975), 91.   Google Scholar

[1]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020389

[2]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[3]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[6]

Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146

[7]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[8]

Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048

[9]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[10]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[11]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[12]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[13]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[14]

Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168

[15]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[16]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[17]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[18]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[19]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[20]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]