• Previous Article
    Finite smooth normal forms and integrability of local families of vector fields
  • DCDS-S Home
  • This Issue
  • Next Article
    Convergence of differentiable functions on closed sets and remarks on the proofs of the "Converse Approximation Lemmas''
December  2010, 3(4): 643-666. doi: 10.3934/dcdss.2010.3.643

Gevrey normal form and effective stability of Lagrangian tori

1. 

University of Rousse, Department of Algebra and Geometry, 7012, Rousse, Bulgaria

2. 

Université de Nantes, Laboratoire de mathématiques Jean Leray, 2, rue de la Houssinière, BP 92208, 44072 Nantes Cedex 03, France

Received  April 2009 Revised  June 2010 Published  August 2010

A Gevrey symplectic normal form of an analytic and more generally Gevrey smooth Hamiltonian near a Lagrangian invariant torus with a Diophantine vector of rotation is obtained. The normal form implies effective stability of the quasi-periodic motion near the torus.
Citation: Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643
References:
[1]

Sh. Alimov, R. Ashurov and A. Pulatov, Multiple Fourier series and Fourier integrals, commutative harmonic analysis IV, Encyclopaedia Math. Sci., 42, 1-95, Springer, Berlin, 1992.

[2]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, "Higher Transcendental Functions,'' Vols. I, II, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953.

[3]

A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem, J. Differential Equations, 77 (1989), 167-198. doi: 10.1016/0022-0396(89)90161-7.

[4]

A. Giorgilli and A. Morbidelli, Invariant KAM tori and global stability for Hamiltonian systems, Z. Angew. Math. Phys., 48 (1997), 102-134. doi: 10.1007/PL00001462.

[5]

T. Gramchev and G. Popov, Nekhoroshev type estimates for billiard ball maps, Annales de l'Institut Fourier, 45 (1995), 859-895.

[6]

G. Iooss and E. Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differential Equations, 212 (2005), 1-61. doi: 10.1016/j.jde.2004.10.015.

[7]

G. Iooss and E. Lombardi, Normal forms with exponentially small remainder: application to homoclinic connections for the reversible $0^{2+}$$i\omega$ resonance, C. R. Math. Acad. Sci. Paris, 339 (2004), 831-838.

[8]

M. Herman, Inégalités "a priori'' pour des tores lagrangiens invariants par des difféomor-phismes symplectiques, (French) [A priori inequalities for Lagrangian tori invariant under symplectic diffeomorphisms], Publ. Math. Inst. Hautes Études Sci., 70 (1989), 47-101.

[9]

H. Komatsu, The implicit function theorem for ultradifferentiable mappings, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 69-72. doi: 10.3792/pjaa.55.69.

[10]

V. F. Lazutkin, "KAM Theory and Semiclassical Approximations to Eigenfunctions,'' Springer-Verlag, Berlin, 1993.

[11]

J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications,'' (French), Vol. 3, Travaux et recherches mathématiques 20, Dunod, Paris, 1970.

[12]

J.-P. Marco and D. Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. Inst. Hautes Études Sci., 96 (2002), 199-275.

[13]

A. Morbidelli and A. Giorgilli, On a connection between KAM and Nekhoroshev's theorems, Phys. D, 86 (1995), 514-516. doi: 10.1016/0167-2789(95)00199-E.

[14]

A. Morbidelli and A. Giorgilli, Superexponential stability of KAM tori, J. Statist. Phys., 78 (1995), 1607-1617. doi: 10.1007/BF02180145.

[15]

F. W. J. Olver, "Asymptotics and Special Functions,'' Academic Press, New York - London, 1974.

[16]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms I - Birkhoff normal forms, Ann. Henri Poincaré, 1 (2000), 223-248. doi: 10.1007/PL00001004.

[17]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms II - Quantum Birkhoff normal forms, Ann. Henri Poincaré, 1 (2000), 249-279. doi: 10.1007/PL00001005.

[18]

G. Popov, KAM theorem for Gevrey Hamiltonians, Ergodic Theory and Dynamical Systems, 24 (2004), 1753-1786. doi: 10.1017/S0143385704000458.

[19]

G. Popov, KAM theorem and quasimodes for Gevrey Hamiltonians, Mat. Contemp., 26 (2004), 87-107.

[20]

G. Popov and P. Topalov, Invariants of isospectral deformations and spectral rigidity, preprint, arXiv:0906.0449v1.

[21]

F. Wagener, A note on Gevrey regular KAM theory and the inverse approximation lemma, Dyn. Syst., 18 (2003), 159-163. doi: 10.1080/1468936031000117857.

[22]

J. Xu and J. You, Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann's non-degeneracy condition, J. Differential Equations, 235 (2007), 609-622. doi: 10.1016/j.jde.2006.12.001.

show all references

References:
[1]

Sh. Alimov, R. Ashurov and A. Pulatov, Multiple Fourier series and Fourier integrals, commutative harmonic analysis IV, Encyclopaedia Math. Sci., 42, 1-95, Springer, Berlin, 1992.

[2]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, "Higher Transcendental Functions,'' Vols. I, II, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953.

[3]

A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem, J. Differential Equations, 77 (1989), 167-198. doi: 10.1016/0022-0396(89)90161-7.

[4]

A. Giorgilli and A. Morbidelli, Invariant KAM tori and global stability for Hamiltonian systems, Z. Angew. Math. Phys., 48 (1997), 102-134. doi: 10.1007/PL00001462.

[5]

T. Gramchev and G. Popov, Nekhoroshev type estimates for billiard ball maps, Annales de l'Institut Fourier, 45 (1995), 859-895.

[6]

G. Iooss and E. Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields, J. Differential Equations, 212 (2005), 1-61. doi: 10.1016/j.jde.2004.10.015.

[7]

G. Iooss and E. Lombardi, Normal forms with exponentially small remainder: application to homoclinic connections for the reversible $0^{2+}$$i\omega$ resonance, C. R. Math. Acad. Sci. Paris, 339 (2004), 831-838.

[8]

M. Herman, Inégalités "a priori'' pour des tores lagrangiens invariants par des difféomor-phismes symplectiques, (French) [A priori inequalities for Lagrangian tori invariant under symplectic diffeomorphisms], Publ. Math. Inst. Hautes Études Sci., 70 (1989), 47-101.

[9]

H. Komatsu, The implicit function theorem for ultradifferentiable mappings, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 69-72. doi: 10.3792/pjaa.55.69.

[10]

V. F. Lazutkin, "KAM Theory and Semiclassical Approximations to Eigenfunctions,'' Springer-Verlag, Berlin, 1993.

[11]

J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications,'' (French), Vol. 3, Travaux et recherches mathématiques 20, Dunod, Paris, 1970.

[12]

J.-P. Marco and D. Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems, Publ. Math. Inst. Hautes Études Sci., 96 (2002), 199-275.

[13]

A. Morbidelli and A. Giorgilli, On a connection between KAM and Nekhoroshev's theorems, Phys. D, 86 (1995), 514-516. doi: 10.1016/0167-2789(95)00199-E.

[14]

A. Morbidelli and A. Giorgilli, Superexponential stability of KAM tori, J. Statist. Phys., 78 (1995), 1607-1617. doi: 10.1007/BF02180145.

[15]

F. W. J. Olver, "Asymptotics and Special Functions,'' Academic Press, New York - London, 1974.

[16]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms I - Birkhoff normal forms, Ann. Henri Poincaré, 1 (2000), 223-248. doi: 10.1007/PL00001004.

[17]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms II - Quantum Birkhoff normal forms, Ann. Henri Poincaré, 1 (2000), 249-279. doi: 10.1007/PL00001005.

[18]

G. Popov, KAM theorem for Gevrey Hamiltonians, Ergodic Theory and Dynamical Systems, 24 (2004), 1753-1786. doi: 10.1017/S0143385704000458.

[19]

G. Popov, KAM theorem and quasimodes for Gevrey Hamiltonians, Mat. Contemp., 26 (2004), 87-107.

[20]

G. Popov and P. Topalov, Invariants of isospectral deformations and spectral rigidity, preprint, arXiv:0906.0449v1.

[21]

F. Wagener, A note on Gevrey regular KAM theory and the inverse approximation lemma, Dyn. Syst., 18 (2003), 159-163. doi: 10.1080/1468936031000117857.

[22]

J. Xu and J. You, Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann's non-degeneracy condition, J. Differential Equations, 235 (2007), 609-622. doi: 10.1016/j.jde.2006.12.001.

[1]

Xiaocai Wang, Junxiang Xu, Dongfeng Zhang. A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2141-2160. doi: 10.3934/dcds.2017092

[2]

Luigi Chierchia, Gabriella Pinzari. Planetary Birkhoff normal forms. Journal of Modern Dynamics, 2011, 5 (4) : 623-664. doi: 10.3934/jmd.2011.5.623

[3]

Michele V. Bartuccelli, G. Gentile, Kyriakos V. Georgiou. Kam theory, Lindstedt series and the stability of the upside-down pendulum. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 413-426. doi: 10.3934/dcds.2003.9.413

[4]

Chiara Caracciolo, Ugo Locatelli. Computer-assisted estimates for Birkhoff normal forms. Journal of Computational Dynamics, 2020, 7 (2) : 425-460. doi: 10.3934/jcd.2020017

[5]

Luca Biasco, Luigi Chierchia. On the measure of KAM tori in two degrees of freedom. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6635-6648. doi: 10.3934/dcds.2020134

[6]

Dongfeng Yan. KAM Tori for generalized Benjamin-Ono equation. Communications on Pure and Applied Analysis, 2015, 14 (3) : 941-957. doi: 10.3934/cpaa.2015.14.941

[7]

Svetlana Bunimovich-Mendrazitsky, Yakov Goltser. Use of quasi-normal form to examine stability of tumor-free equilibrium in a mathematical model of bcg treatment of bladder cancer. Mathematical Biosciences & Engineering, 2011, 8 (2) : 529-547. doi: 10.3934/mbe.2011.8.529

[8]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[9]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[10]

Guanghua Shi, Dongfeng Yan. KAM tori for quintic nonlinear schrödinger equations with given potential. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2421-2439. doi: 10.3934/dcds.2020120

[11]

Andrea Davini, Maxime Zavidovique. Weak KAM theory for nonregular commuting Hamiltonians. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 57-94. doi: 10.3934/dcdsb.2013.18.57

[12]

P. De Maesschalck. Gevrey normal forms for nilpotent contact points of order two. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 677-688. doi: 10.3934/dcds.2014.34.677

[13]

Virginie De Witte, Willy Govaerts. Numerical computation of normal form coefficients of bifurcations of odes in MATLAB. Conference Publications, 2011, 2011 (Special) : 362-372. doi: 10.3934/proc.2011.2011.362

[14]

Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561

[15]

John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170

[16]

Gabriela Jaramillo. Rotating spirals in oscillatory media with nonlocal interactions and their normal form. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022085

[17]

Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069

[18]

Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080

[19]

Jan Prüss, Gieri Simonett, Rico Zacher. On normal stability for nonlinear parabolic equations. Conference Publications, 2009, 2009 (Special) : 612-621. doi: 10.3934/proc.2009.2009.612

[20]

Xiaocai Wang, Junxiang Xu. Gevrey-smoothness of invariant tori for analytic reversible systems under Rüssmann's non-degeneracy condition. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 701-718. doi: 10.3934/dcds.2009.25.701

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (107)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]