-
Previous Article
Finite smooth normal forms and integrability of local families of vector fields
- DCDS-S Home
- This Issue
-
Next Article
Convergence of differentiable functions on closed sets and remarks on the proofs of the "Converse Approximation Lemmas''
Gevrey normal form and effective stability of Lagrangian tori
1. | University of Rousse, Department of Algebra and Geometry, 7012, Rousse, Bulgaria |
2. | Université de Nantes, Laboratoire de mathématiques Jean Leray, 2, rue de la Houssinière, BP 92208, 44072 Nantes Cedex 03, France |
References:
[1] |
Sh. Alimov, R. Ashurov and A. Pulatov, Multiple Fourier series and Fourier integrals, commutative harmonic analysis IV,, Encyclopaedia Math. Sci., 42 (1992), 1.
|
[2] |
A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, "Higher Transcendental Functions,'' Vols. I, II,, McGraw-Hill Book Company, (1953).
|
[3] |
A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem,, J. Differential Equations, 77 (1989), 167.
doi: 10.1016/0022-0396(89)90161-7. |
[4] |
A. Giorgilli and A. Morbidelli, Invariant KAM tori and global stability for Hamiltonian systems, , Z. Angew. Math. Phys., 48 (1997), 102.
doi: 10.1007/PL00001462. |
[5] |
T. Gramchev and G. Popov, Nekhoroshev type estimates for billiard ball maps,, Annales de l'Institut Fourier, 45 (1995), 859.
|
[6] |
G. Iooss and E. Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields,, J. Differential Equations, 212 (2005), 1.
doi: 10.1016/j.jde.2004.10.015. |
[7] |
G. Iooss and E. Lombardi, Normal forms with exponentially small remainder: application to homoclinic connections for the reversible $0^{2+}$$i\omega$ resonance,, C. R. Math. Acad. Sci. Paris, 339 (2004), 831.
|
[8] |
M. Herman, Inégalités "a priori'' pour des tores lagrangiens invariants par des difféomor-phismes symplectiques, (French) [A priori inequalities for Lagrangian tori invariant under symplectic diffeomorphisms],, Publ. Math. Inst. Hautes Études Sci., 70 (1989), 47.
|
[9] |
H. Komatsu, The implicit function theorem for ultradifferentiable mappings,, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 69.
doi: 10.3792/pjaa.55.69. |
[10] |
V. F. Lazutkin, "KAM Theory and Semiclassical Approximations to Eigenfunctions,'', Springer-Verlag, (1993).
|
[11] |
J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications,'' (French), Vol. 3, Travaux et recherches mathématiques 20,, Dunod, (1970).
|
[12] |
J.-P. Marco and D. Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems,, Publ. Math. Inst. Hautes Études Sci., 96 (2002), 199.
|
[13] |
A. Morbidelli and A. Giorgilli, On a connection between KAM and Nekhoroshev's theorems,, Phys. D, 86 (1995), 514.
doi: 10.1016/0167-2789(95)00199-E. |
[14] |
A. Morbidelli and A. Giorgilli, Superexponential stability of KAM tori,, J. Statist. Phys., 78 (1995), 1607.
doi: 10.1007/BF02180145. |
[15] |
F. W. J. Olver, "Asymptotics and Special Functions,'', Academic Press, (1974).
|
[16] |
G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms I - Birkhoff normal forms,, Ann. Henri Poincaré, 1 (2000), 223.
doi: 10.1007/PL00001004. |
[17] |
G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms II - Quantum Birkhoff normal forms,, Ann. Henri Poincaré, 1 (2000), 249.
doi: 10.1007/PL00001005. |
[18] |
G. Popov, KAM theorem for Gevrey Hamiltonians,, Ergodic Theory and Dynamical Systems, 24 (2004), 1753.
doi: 10.1017/S0143385704000458. |
[19] |
G. Popov, KAM theorem and quasimodes for Gevrey Hamiltonians,, Mat. Contemp., 26 (2004), 87.
|
[20] |
G. Popov and P. Topalov, Invariants of isospectral deformations and spectral rigidity, preprint,, \arXiv{0906.0449v1}., (). Google Scholar |
[21] |
F. Wagener, A note on Gevrey regular KAM theory and the inverse approximation lemma,, Dyn. Syst., 18 (2003), 159.
doi: 10.1080/1468936031000117857. |
[22] |
J. Xu and J. You, Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann's non-degeneracy condition,, J. Differential Equations, 235 (2007), 609.
doi: 10.1016/j.jde.2006.12.001. |
show all references
References:
[1] |
Sh. Alimov, R. Ashurov and A. Pulatov, Multiple Fourier series and Fourier integrals, commutative harmonic analysis IV,, Encyclopaedia Math. Sci., 42 (1992), 1.
|
[2] |
A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, "Higher Transcendental Functions,'' Vols. I, II,, McGraw-Hill Book Company, (1953).
|
[3] |
A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three-body problem,, J. Differential Equations, 77 (1989), 167.
doi: 10.1016/0022-0396(89)90161-7. |
[4] |
A. Giorgilli and A. Morbidelli, Invariant KAM tori and global stability for Hamiltonian systems, , Z. Angew. Math. Phys., 48 (1997), 102.
doi: 10.1007/PL00001462. |
[5] |
T. Gramchev and G. Popov, Nekhoroshev type estimates for billiard ball maps,, Annales de l'Institut Fourier, 45 (1995), 859.
|
[6] |
G. Iooss and E. Lombardi, Polynomial normal forms with exponentially small remainder for analytic vector fields,, J. Differential Equations, 212 (2005), 1.
doi: 10.1016/j.jde.2004.10.015. |
[7] |
G. Iooss and E. Lombardi, Normal forms with exponentially small remainder: application to homoclinic connections for the reversible $0^{2+}$$i\omega$ resonance,, C. R. Math. Acad. Sci. Paris, 339 (2004), 831.
|
[8] |
M. Herman, Inégalités "a priori'' pour des tores lagrangiens invariants par des difféomor-phismes symplectiques, (French) [A priori inequalities for Lagrangian tori invariant under symplectic diffeomorphisms],, Publ. Math. Inst. Hautes Études Sci., 70 (1989), 47.
|
[9] |
H. Komatsu, The implicit function theorem for ultradifferentiable mappings,, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 69.
doi: 10.3792/pjaa.55.69. |
[10] |
V. F. Lazutkin, "KAM Theory and Semiclassical Approximations to Eigenfunctions,'', Springer-Verlag, (1993).
|
[11] |
J.-L. Lions and E. Magenes, "Problèmes aux Limites Non Homogènes et Applications,'' (French), Vol. 3, Travaux et recherches mathématiques 20,, Dunod, (1970).
|
[12] |
J.-P. Marco and D. Sauzin, Stability and instability for Gevrey quasi-convex near-integrable Hamiltonian systems,, Publ. Math. Inst. Hautes Études Sci., 96 (2002), 199.
|
[13] |
A. Morbidelli and A. Giorgilli, On a connection between KAM and Nekhoroshev's theorems,, Phys. D, 86 (1995), 514.
doi: 10.1016/0167-2789(95)00199-E. |
[14] |
A. Morbidelli and A. Giorgilli, Superexponential stability of KAM tori,, J. Statist. Phys., 78 (1995), 1607.
doi: 10.1007/BF02180145. |
[15] |
F. W. J. Olver, "Asymptotics and Special Functions,'', Academic Press, (1974).
|
[16] |
G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms I - Birkhoff normal forms,, Ann. Henri Poincaré, 1 (2000), 223.
doi: 10.1007/PL00001004. |
[17] |
G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms II - Quantum Birkhoff normal forms,, Ann. Henri Poincaré, 1 (2000), 249.
doi: 10.1007/PL00001005. |
[18] |
G. Popov, KAM theorem for Gevrey Hamiltonians,, Ergodic Theory and Dynamical Systems, 24 (2004), 1753.
doi: 10.1017/S0143385704000458. |
[19] |
G. Popov, KAM theorem and quasimodes for Gevrey Hamiltonians,, Mat. Contemp., 26 (2004), 87.
|
[20] |
G. Popov and P. Topalov, Invariants of isospectral deformations and spectral rigidity, preprint,, \arXiv{0906.0449v1}., (). Google Scholar |
[21] |
F. Wagener, A note on Gevrey regular KAM theory and the inverse approximation lemma,, Dyn. Syst., 18 (2003), 159.
doi: 10.1080/1468936031000117857. |
[22] |
J. Xu and J. You, Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann's non-degeneracy condition,, J. Differential Equations, 235 (2007), 609.
doi: 10.1016/j.jde.2006.12.001. |
[1] |
Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104 |
[2] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[3] |
Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020136 |
[4] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[5] |
Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451 |
[6] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[7] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
[8] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[9] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[10] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[11] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021005 |
[12] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[13] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[14] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[15] |
Akio Matsumot, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021069 |
[16] |
Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021066 |
[17] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021068 |
[18] |
Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329 |
[19] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]