December  2010, 3(4): 719-768. doi: 10.3934/dcdss.2010.3.719

A parametrised version of Moser's modifying terms theorem

1. 

CeNDEF, Dept. of Quantitative Economics, University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, Netherlands

Received  April 2009 Revised  May 2010 Published  August 2010

A sharpened version of Moser's 'modifying terms' KAM theorem is derived, and it is shown how this theorem can be used to investigate the persistence of invariant tori in general situations, including those where some of the Floquet exponents of the invariant torus may vanish. The result is 'structural' and can be applied to dissipative, Hamiltonian, and symmetric vector fields; moreover, we give variants of the result for real analytic, Gevrey regular ultradifferentiable and finitely differentiable vector fields. In the first two cases, the conjugacy constructed in the theorem is shown to be Gevrey smooth in the sense of Whitney on the set of parameters that satisfy a "Diophantine'' non-resonance condition.
Citation: Florian Wagener. A parametrised version of Moser's modifying terms theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 719-768. doi: 10.3934/dcdss.2010.3.719
References:
[1]

V. I. Arnol'd, "Geometrical Methods in the Theory of Ordinary Differential Equations,", Springer, (1988).   Google Scholar

[2]

V. I. Arnol'd, "Mathematical Methods Of Classical Mechanics,", Springer, (1989).   Google Scholar

[3]

R. I. Bogdanov, Bifurcations of a limit cycle of a certain family of vector fields on the plane,, Trudy Seminara Imeni I.G. Petrovskogo, 2 (1976), 23.   Google Scholar

[4]

R. I. Bogdanov, The versal deformation of a singular point of a vector field on the plane in the case of zero eigenvalues,, Trudy Seminara Imeni I. G. Petrovskogo, 2 (1976), 37.   Google Scholar

[5]

J. Bonet, R. W. Braun, R. Meise and B. A. Taylor, Whitney's extension theorem for nonquasianalytic classes of ultradifferentiable functions,, Studia Mathematica, 99 (1991), 155.   Google Scholar

[6]

H. W. Broer, M. C. Ciocci, H. Hanßmann and A. Vanderbauwhede, Quasi-periodic stability of normally resonant tori,, Physica D, 238 (2009), 309.  doi: 10.1016/j.physd.2008.10.004.  Google Scholar

[7]

H. W. Broer, M. C. Ciocci and H. Hanßmann, The quasi-periodic reversible Hopf bifurcation,, International Journal of Bifurcation and Chaos, 17 (2007), 2605.  doi: 10.1142/S021812740701866X.  Google Scholar

[8]

H. W. Broer, H. Hanßmann and J. You, Bifurcations of normally parabolic tori in Hamiltonian systems,, Nonlinearity, 18 (2005), 1735.  doi: 10.1088/0951-7715/18/4/018.  Google Scholar

[9]

H. W. Broer, J. Hoo and V. Naudot, Normal linear stability of quasi-periodic tori,, Journal of Differential Equations, 232 (2007), 355.  doi: 10.1016/j.jde.2006.08.022.  Google Scholar

[10]

H. W. Broer, G. B. Huitema and M. B. Sevryuk, "Quasi-periodic Motions in Families of Dynamical Systems: Order Amidst Chaos,", Lecture Notes in Mathematics, 1645 (1996).   Google Scholar

[11]

H. W. Broer, G. B. Huitema, F. Takens and B. L. J. Braaksma, "Unfoldings and Bifurcations of Quasi-periodic Tori,", Memoirs of the AMS, 83 (1990).   Google Scholar

[12]

H. W. Broer, R. Roussarie and C. Simó, On the Bogdanov-Takens bifurcation for planar diffeomorphisms,, Proceedings of Equadiff '91 (C. Perelló, (1993), 81.   Google Scholar

[13]

H. W. Broer, R. Roussarie and C. Simó, Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphisms,, Ergodic Theory and Dynamical Systems, 16 (1996), 1147.   Google Scholar

[14]

T. Carletti and S. Marmi, Linearization of analytic and non-analytic germs of diffeomorphisms of $C,0)$,, Bulletin de la Société Mathématique de France, 128 (2000), 69.   Google Scholar

[15]

A. Chenciner, Bifurcations de points fixes elliptiques. I. Courbes invariantes,, Publications Mathématiques de l'I.H.E.S., 61 (1985), 67.   Google Scholar

[16]

M. C. Ciocci, "Bifurcation of Periodic Orbits and Persistence of Quasi Periodic Orbits in Families of Reversible Systems,", Ph.D. thesis, (2003).   Google Scholar

[17]

H. H. de Jong, "Quasi-periodic Breathers in Systems of Weakly Coupled Pendulums: Applications of KAM Theory,", Ph.D. thesis, (1999).   Google Scholar

[18]

G. Gentile and M. Procesi, Periodic solutions for a class of nonlinear partial differential equations in higher dimension,, Communications of Mathematical Physics, 289 (2009), 863.  doi: 10.1007/s00220-009-0817-1.  Google Scholar

[19]

A. González-Enríquez, À. Haro and R. de la Llave, Translated torus theory with parameters and applications,, In preparation., ().   Google Scholar

[20]

M. Golubitsky and V. Guillemin, "Stable Mappings and Their Singularities,", Graduate Texts in Mathematics, 14 (1973).   Google Scholar

[21]

H. Hanßmann, The quasi-periodic centre-saddle bifurcation,, Journal of Differential Equations, 142 (1998), 305.  doi: 10.1006/jdeq.1997.3365.  Google Scholar

[22]

H. Hanßmann, "Local and Semi-local Bifurcations in Hamiltonian Dynamical Systems: Results and Examples,", Lecture Notes in Mathematics, 1893 (2007).   Google Scholar

[23]

G. H. Hardy, J. E. Littlewood and G. Pólya, "Inequalities,", Cambridge University Press, (1952).   Google Scholar

[24]

J. Hoo, "Quasi-periodic Bifurcations in a Strong Resonance: Combination Tones in Gyroscopic Stabilisation,", Ph.D. thesis, (2005).   Google Scholar

[25]

L. Hörmander, "An Introduction to Complex Analysis in Several Variables,", North-Holland, (1990).   Google Scholar

[26]

L. Hörmander, "The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis,", Springer, (1990).   Google Scholar

[27]

X. Li and R. de la Llave, Convergence of differentiable functions on closed sets and remarks on the proofs of the "converse approximation lemmas'',, Preprint 2009., (2009).   Google Scholar

[28]

J. Moser, Convergent series expansions for quasi-periodic motions,, Mathematische Annalen, 169 (1967), 136.  doi: 10.1007/BF01399536.  Google Scholar

[29]

V. Poénaru, "Analyse Différentielle,", Lecture Notes in Mathematics, 371 (1974).   Google Scholar

[30]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. I: Birkhoff normal forms,, Annales de l'Institut Henri Poincaré, 1 (2000), 223.  doi: 10.1007/PL00001004.  Google Scholar

[31]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. II: Quantum Birkhoff normal forms,, Annales de l'Institut Henri Poincaré, 1 (2000), 249.   Google Scholar

[32]

G. Popov, KAM theorem for Gevrey Hamiltonians,, Ergodic Theory and Dynamical Systems, 24 (2004), 1753.  doi: 10.1017/S0143385704000458.  Google Scholar

[33]

J. Pöschel, Integrability of Hamiltonian systems on Cantor sets,, Communications of Pure and Applied Mathematics, 35 (1982), 653.  doi: 10.1002/cpa.3160350504.  Google Scholar

[34]

A. S. Pyartli, Diophantine approximations on submanifolds of Euclidean space,, Functional Analysis and Applications, 3 (1969), 303.  doi: 10.1007/BF01076316.  Google Scholar

[35]

R. Roussarie and F. O. O. Wagener, A study of the Bogdanov-Takens bifurcation,, Resenhas IME-USP, 2 (1995), 1.   Google Scholar

[36]

H. Rüssmann, Kleine Nenner I: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes,, Nachr. Ak. Wiss. Gött., 5 (1970), 67.   Google Scholar

[37]

H. Rüssmann, On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus,, Dynamical Systems, 38 (1975), 598.   Google Scholar

[38]

M. B. Sevryuk, KAM tori: Persistence and smoothness,, Nonlinearity, 21 (2008).  doi: 10.1088/0951-7715/21/10/T01.  Google Scholar

[39]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton Univ. Press, (1970).   Google Scholar

[40]

F. Takens, Forced oscillations and bifurcations,, Communications of the Mathematical Institute 3, (1974), 1.   Google Scholar

[41]

F. O. O. Wagener, A note on Gevrey regular KAM theory and the inverse approximation lemma,, Dynamical Systems, 18 (2003), 159.  doi: 10.1080/1468936031000117857.  Google Scholar

[42]

F. O. O. Wagener, On the quasi-periodic $d$-fold degenerate bifurcation,, Journal of Differential Equations, 216 (2005), 261.  doi: 10.1016/j.jde.2005.06.013.  Google Scholar

[43]

J. Xu and J. You, Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann's non-degeneracy condition,, Journal of Differential Equations, 235 (2007), 609.  doi: 10.1016/j.jde.2006.12.001.  Google Scholar

[44]

E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems I,, Communications in Pure and Applied Mathematics, 28 (1975), 91.   Google Scholar

[45]

D. Zhang and J. Xu, Gevrey-smoothness of elliptic lower-dimensional invariant tori in Hamiltonian systems under Rüssmann's non-degeneracy condition,, Journal of Mathematical Analysis and Applications, 323 (2006), 293.  doi: 10.1016/j.jmaa.2005.10.029.  Google Scholar

[46]

D. Zhang and J. Xu, On elliptic lower dimensional tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition,, Discrete and Continuous Dynamical Systems, 16 (2006), 635.  doi: 10.3934/dcds.2006.16.635.  Google Scholar

[47]

D. Zhang and J. Xu, Invariant tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition,, Nonlinear Analysis, 67 (2007), 2240.  doi: 10.1016/j.na.2006.09.012.  Google Scholar

[48]

D. Zhang and J. Xu, Invariant hyperbolic tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition,, Acta Mathematica Sinica-English Series, 24 (2008), 1625.  doi: 10.1007/s10114-008-6180-x.  Google Scholar

show all references

References:
[1]

V. I. Arnol'd, "Geometrical Methods in the Theory of Ordinary Differential Equations,", Springer, (1988).   Google Scholar

[2]

V. I. Arnol'd, "Mathematical Methods Of Classical Mechanics,", Springer, (1989).   Google Scholar

[3]

R. I. Bogdanov, Bifurcations of a limit cycle of a certain family of vector fields on the plane,, Trudy Seminara Imeni I.G. Petrovskogo, 2 (1976), 23.   Google Scholar

[4]

R. I. Bogdanov, The versal deformation of a singular point of a vector field on the plane in the case of zero eigenvalues,, Trudy Seminara Imeni I. G. Petrovskogo, 2 (1976), 37.   Google Scholar

[5]

J. Bonet, R. W. Braun, R. Meise and B. A. Taylor, Whitney's extension theorem for nonquasianalytic classes of ultradifferentiable functions,, Studia Mathematica, 99 (1991), 155.   Google Scholar

[6]

H. W. Broer, M. C. Ciocci, H. Hanßmann and A. Vanderbauwhede, Quasi-periodic stability of normally resonant tori,, Physica D, 238 (2009), 309.  doi: 10.1016/j.physd.2008.10.004.  Google Scholar

[7]

H. W. Broer, M. C. Ciocci and H. Hanßmann, The quasi-periodic reversible Hopf bifurcation,, International Journal of Bifurcation and Chaos, 17 (2007), 2605.  doi: 10.1142/S021812740701866X.  Google Scholar

[8]

H. W. Broer, H. Hanßmann and J. You, Bifurcations of normally parabolic tori in Hamiltonian systems,, Nonlinearity, 18 (2005), 1735.  doi: 10.1088/0951-7715/18/4/018.  Google Scholar

[9]

H. W. Broer, J. Hoo and V. Naudot, Normal linear stability of quasi-periodic tori,, Journal of Differential Equations, 232 (2007), 355.  doi: 10.1016/j.jde.2006.08.022.  Google Scholar

[10]

H. W. Broer, G. B. Huitema and M. B. Sevryuk, "Quasi-periodic Motions in Families of Dynamical Systems: Order Amidst Chaos,", Lecture Notes in Mathematics, 1645 (1996).   Google Scholar

[11]

H. W. Broer, G. B. Huitema, F. Takens and B. L. J. Braaksma, "Unfoldings and Bifurcations of Quasi-periodic Tori,", Memoirs of the AMS, 83 (1990).   Google Scholar

[12]

H. W. Broer, R. Roussarie and C. Simó, On the Bogdanov-Takens bifurcation for planar diffeomorphisms,, Proceedings of Equadiff '91 (C. Perelló, (1993), 81.   Google Scholar

[13]

H. W. Broer, R. Roussarie and C. Simó, Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphisms,, Ergodic Theory and Dynamical Systems, 16 (1996), 1147.   Google Scholar

[14]

T. Carletti and S. Marmi, Linearization of analytic and non-analytic germs of diffeomorphisms of $C,0)$,, Bulletin de la Société Mathématique de France, 128 (2000), 69.   Google Scholar

[15]

A. Chenciner, Bifurcations de points fixes elliptiques. I. Courbes invariantes,, Publications Mathématiques de l'I.H.E.S., 61 (1985), 67.   Google Scholar

[16]

M. C. Ciocci, "Bifurcation of Periodic Orbits and Persistence of Quasi Periodic Orbits in Families of Reversible Systems,", Ph.D. thesis, (2003).   Google Scholar

[17]

H. H. de Jong, "Quasi-periodic Breathers in Systems of Weakly Coupled Pendulums: Applications of KAM Theory,", Ph.D. thesis, (1999).   Google Scholar

[18]

G. Gentile and M. Procesi, Periodic solutions for a class of nonlinear partial differential equations in higher dimension,, Communications of Mathematical Physics, 289 (2009), 863.  doi: 10.1007/s00220-009-0817-1.  Google Scholar

[19]

A. González-Enríquez, À. Haro and R. de la Llave, Translated torus theory with parameters and applications,, In preparation., ().   Google Scholar

[20]

M. Golubitsky and V. Guillemin, "Stable Mappings and Their Singularities,", Graduate Texts in Mathematics, 14 (1973).   Google Scholar

[21]

H. Hanßmann, The quasi-periodic centre-saddle bifurcation,, Journal of Differential Equations, 142 (1998), 305.  doi: 10.1006/jdeq.1997.3365.  Google Scholar

[22]

H. Hanßmann, "Local and Semi-local Bifurcations in Hamiltonian Dynamical Systems: Results and Examples,", Lecture Notes in Mathematics, 1893 (2007).   Google Scholar

[23]

G. H. Hardy, J. E. Littlewood and G. Pólya, "Inequalities,", Cambridge University Press, (1952).   Google Scholar

[24]

J. Hoo, "Quasi-periodic Bifurcations in a Strong Resonance: Combination Tones in Gyroscopic Stabilisation,", Ph.D. thesis, (2005).   Google Scholar

[25]

L. Hörmander, "An Introduction to Complex Analysis in Several Variables,", North-Holland, (1990).   Google Scholar

[26]

L. Hörmander, "The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis,", Springer, (1990).   Google Scholar

[27]

X. Li and R. de la Llave, Convergence of differentiable functions on closed sets and remarks on the proofs of the "converse approximation lemmas'',, Preprint 2009., (2009).   Google Scholar

[28]

J. Moser, Convergent series expansions for quasi-periodic motions,, Mathematische Annalen, 169 (1967), 136.  doi: 10.1007/BF01399536.  Google Scholar

[29]

V. Poénaru, "Analyse Différentielle,", Lecture Notes in Mathematics, 371 (1974).   Google Scholar

[30]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. I: Birkhoff normal forms,, Annales de l'Institut Henri Poincaré, 1 (2000), 223.  doi: 10.1007/PL00001004.  Google Scholar

[31]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. II: Quantum Birkhoff normal forms,, Annales de l'Institut Henri Poincaré, 1 (2000), 249.   Google Scholar

[32]

G. Popov, KAM theorem for Gevrey Hamiltonians,, Ergodic Theory and Dynamical Systems, 24 (2004), 1753.  doi: 10.1017/S0143385704000458.  Google Scholar

[33]

J. Pöschel, Integrability of Hamiltonian systems on Cantor sets,, Communications of Pure and Applied Mathematics, 35 (1982), 653.  doi: 10.1002/cpa.3160350504.  Google Scholar

[34]

A. S. Pyartli, Diophantine approximations on submanifolds of Euclidean space,, Functional Analysis and Applications, 3 (1969), 303.  doi: 10.1007/BF01076316.  Google Scholar

[35]

R. Roussarie and F. O. O. Wagener, A study of the Bogdanov-Takens bifurcation,, Resenhas IME-USP, 2 (1995), 1.   Google Scholar

[36]

H. Rüssmann, Kleine Nenner I: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes,, Nachr. Ak. Wiss. Gött., 5 (1970), 67.   Google Scholar

[37]

H. Rüssmann, On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus,, Dynamical Systems, 38 (1975), 598.   Google Scholar

[38]

M. B. Sevryuk, KAM tori: Persistence and smoothness,, Nonlinearity, 21 (2008).  doi: 10.1088/0951-7715/21/10/T01.  Google Scholar

[39]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton Univ. Press, (1970).   Google Scholar

[40]

F. Takens, Forced oscillations and bifurcations,, Communications of the Mathematical Institute 3, (1974), 1.   Google Scholar

[41]

F. O. O. Wagener, A note on Gevrey regular KAM theory and the inverse approximation lemma,, Dynamical Systems, 18 (2003), 159.  doi: 10.1080/1468936031000117857.  Google Scholar

[42]

F. O. O. Wagener, On the quasi-periodic $d$-fold degenerate bifurcation,, Journal of Differential Equations, 216 (2005), 261.  doi: 10.1016/j.jde.2005.06.013.  Google Scholar

[43]

J. Xu and J. You, Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann's non-degeneracy condition,, Journal of Differential Equations, 235 (2007), 609.  doi: 10.1016/j.jde.2006.12.001.  Google Scholar

[44]

E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems I,, Communications in Pure and Applied Mathematics, 28 (1975), 91.   Google Scholar

[45]

D. Zhang and J. Xu, Gevrey-smoothness of elliptic lower-dimensional invariant tori in Hamiltonian systems under Rüssmann's non-degeneracy condition,, Journal of Mathematical Analysis and Applications, 323 (2006), 293.  doi: 10.1016/j.jmaa.2005.10.029.  Google Scholar

[46]

D. Zhang and J. Xu, On elliptic lower dimensional tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition,, Discrete and Continuous Dynamical Systems, 16 (2006), 635.  doi: 10.3934/dcds.2006.16.635.  Google Scholar

[47]

D. Zhang and J. Xu, Invariant tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition,, Nonlinear Analysis, 67 (2007), 2240.  doi: 10.1016/j.na.2006.09.012.  Google Scholar

[48]

D. Zhang and J. Xu, Invariant hyperbolic tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition,, Acta Mathematica Sinica-English Series, 24 (2008), 1625.  doi: 10.1007/s10114-008-6180-x.  Google Scholar

[1]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[2]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[3]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[4]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[5]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[8]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[9]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[10]

Cécile Carrère, Grégoire Nadin. Influence of mutations in phenotypically-structured populations in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2020, 25 (9) : 3609-3630. doi: 10.3934/dcdsb.2020075

[11]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[12]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[13]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[14]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[15]

Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090

[16]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (137)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]