\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence of solitary waves in nonlinear equations of Schrödinger type

Abstract Related Papers Cited by
  • In this work we study the existence of solitary waves in nonlinear equations of Schrödinger type. We prove the existence of the positive solution and using the bifurcation theory show that the norm of the given solution tends to zero as the coefficient corresponding to the linear term vanishes.
    Mathematics Subject Classification: Primary: 35Q51, 35Q55; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Kh. Abdullaev, A. Gammal, L. Tomio and T. Frederico, Stability of trapped Bose-Einstein condensates, Phys. Rev. A, 63 (2001), 043604.doi: doi:10.1103/PhysRevA.63.043604.

    [2]

    A. Ambrosetti, V Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc., 7 (2005), 117-144.doi: doi:10.4171/JEMS/24.

    [3]

    A. Ambrosetti and A. Malchiodi, "Perturbation Methods and Semilinear Elliptic Problems on $R^n$," Progress in Mathematics, 240, Birkhäuser Verlag, Basel, 2006.

    [4]

    A. Ambrosetti and A. Malchiodi, "Nonlinear Analysis and Semilinear Elliptic Problems," Cambridge Studies in Adv. Math., 104, Cambridge University Press, Cambridge, 2007.

    [5]

    A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.doi: doi:10.1016/0022-1236(73)90051-7.

    [6]

    A. Bahri and P. L. Lions, On the existence of positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. Henri Poincaré, Analyse Nonlinéaire, 14 (1997), 365-413.

    [7]

    I. V. Barashenkov and V. G. Makhankov, Soliton-like "bubbles" in the system of interacting bosons, Phys. Lett. A, 128 (1988), 52-56.doi: doi:10.1016/0375-9601(88)91042-0.

    [8]

    T. Bartsch and Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbbR^N$, Comm. Part. Diff. Eq., 20 (1995), 1725-1741.doi: doi:10.1080/03605309508821149.

    [9]

    J. Belmonte-Beitia, On the existence of bright solitons in cubic-quintic nonlinear Schrödinger equation with inhomogeneous nonlinearity, Mathematical Problems in Engineering, 2008 (2008), Article ID 935390.doi: doi:10.1155/2008/935390.

    [10]

    J. Belmonte-Beitia, Symmetric and asymmetric bound states for the nonlinear Schrödinger equation with inhomogeneous nonlinearity, J. Phys. A: Math. Theor., 42 (2009), 035208.doi: doi:10.1088/1751-8113/42/3/035208.

    [11]

    J. Belmonte-Beitia, V. M. Pérez-García, V. Vekslerchik and V. V. Konotop, Localized nonlinear waves in systems with time and space modulated nonlinearities, Phys. Rev. Lett., 100 (2008), 164102.doi: doi:10.1103/PhysRevLett.100.164102.

    [12]

    J. Belmonte-Beitia, V. M. Pérez-García, V. Vekslerchik and P. J. Torres, Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities, Phys. Rev. Lett., 98 (2007), 064102.doi: doi:10.1103/PhysRevLett.98.064102.

    [13]

    J. Belmonte-Beitia, V. M. Pérez-García, V. Vekslerchik and P. J. Torres, Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations, Discrete and Continuous Dynamical Systems - Series B, 9 (2008), 221-233.

    [14]

    H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I and II, Arch. Rat. Mech. Anal., 82 (1983), 313-345; 347-379 (MR0695536).

    [15]

    G. Boudeps, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala and F. Sanchez, Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses, Opt. Commun., 219 (2003), 427-433.doi: doi:10.1016/S0030-4018(03)01341-5.

    [16]

    M. Centurion, M. A. Porter, P. G. Kevrekidis and D. Psaltis, Nonlinearity management in optics: Experiment, theory and simulation, Phys. Rev. Lett., 97 (2006), 033903.doi: doi:10.1103/PhysRevLett.97.033903.

    [17]

    C. Chin, T. Kraemer, M. Mark, J. Herbig, P. Waldburger, H.-C. Nägeri and R. Grim, Observation of Feshbach-like resonances in collisions between ultracold molecules, Phys. Rev. Lett., 94 (2005), 123201.doi: doi:10.1103/PhysRevLett.94.123201.

    [18]

    S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell and C. E. Wieman, Stable 85Rb Bose-Einstein condensates with widely tunable interactions}, Phys. Rev. Lett., 85 (2000), 1795.doi: doi:10.1103/PhysRevLett.85.1795.

    [19]

    F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71 (1999), 463-512.doi: doi:10.1103/RevModPhys.71.463.

    [20]

    A. S. Davydov, "Solitons in Molecular Systems," Translated from the Russian by Eugene S. Kryachko. Mathematics and its Applications (Soviet Series), 4. D. Reidel Publishing Co., Dordrecht, 1985.

    [21]

    R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, "Solitons and Nonlinear Wave Equations," Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1982.

    [22]

    A. Hasegawa, "Optical solitons in Fibers," Springer-Verlag, Berlin, 1989.

    [23]

    P. G. Kevrekidis, D. E. Pelinovsky and A. Stefanov, Nonlinearity management in higher dimensions, J. Phys. A: Math. Gen., 39 (2006), 479-488.doi: doi:10.1088/0305-4470/39/3/002.

    [24]

    Y. Kivshar and G. P. Agrawal, "Optical Solitons: From Fibers to Photonic Crystals," Academic Press, 2003.

    [25]

    P. L. Lions, The concentration-compactness principle in the calculus of varitions, the locally compact case. Part I, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109-145.

    [26]

    B. A. Malomed, "Soliton Management in Periodic Systems," Springer, New York, 2006.

    [27]

    A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287.doi: doi:10.1007/s00032-005-0047-8.

    [28]

    D. E. Pelinovsky, P. G. Kevrekidis and D. J. Frantzeskakis, Averaging for solitons with nonlinearity management, Phys. Rev. Lett., 91 (2003), 240201.doi: doi:10.1103/PhysRevLett.91.240201.

    [29]

    C. Sulem and P. Sulem, "The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse," Springer, Berlin, 2000.

    [30]

    P. Torres, Guided waves in an multi-layered optical structure, Nonlinearity, 19 (2006), 2103-2113.doi: doi:10.1088/0951-7715/19/9/006.

    [31]

    M. Willem, "Minimax Theorems," Progress in Nonlinear Differential Equations and Their Applications, 24, Birkhäuser Boston, Inc., Boston, MA, 1996.

    [32]

    C. Zhan, D. Zhang, D. Zhu, D. Wang, Y. Li, D. Li, Z. Lu, L. Zhao and Y. Nie, Third- and fifth- order optical nonlinearities in a new stilbazolium derivative, J. Opt. Soc. Am. B, 19 (2002), 369-375.doi: doi:10.1364/JOSAB.19.000369.

    [33]

    C. T. Zhou and X. T. He, Stochastic diffusion of electrons in evolution Langmuir fields, Phys. Scr., 50 (1994), 415.doi: doi:10.1088/0031-8949/50/4/015.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(78) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return