\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Complex spatiotemporal behavior in a chain of one-way nonlinearly coupled elements

Abstract Related Papers Cited by
  • The dynamics of asymmetrically coupled nonlinear elements is considered. It is shown that there are two distinctive regimes of oscillatory behavior of one-way nonlinearly coupled elements depending on the relaxation time and the strength of the coupling. In the subcritical regime when the relaxation time is shorter than a critical one a spatially uniform stationary state is stable. In the supercritical regime due to a Hopf bifurcation traveling waves spontaneously create and propagate along the system. Our analytical approach is in good agreement with numerical simulations of the fully nonlinear model.
    Mathematics Subject Classification: Primary: 34K18, 35C07, 35B36; Secondary: 37C75.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions," Dover Publications, Inc., New York, 1972.

    [2]

    M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035-1042.doi: 10.1103/PhysRevE.51.1035.

    [3]

    A. R. Bulsara, V. In, A. Kho, A. Palacios, P. Longhini, J. D. Neff, G. Anderson, C. Obra, S. Baglio and B. Ando, Exploiting nonlinear dynamics in a coupled-core fluxgate magnetometer, Meas. Sci. Technol., 19 (2008), 075203-075221.doi: 10.1088/0957-0233/19/7/075203.

    [4]

    A. H. Cohen, P. J. Holmes and R. H. RandThe nature of the coupling between segmental oscillators and the lamprey spinal generator for locomotion: A mathematical model, J. Math. Biol., 13 (1981/82), 345-369. doi: 10.1007/BF00276069.

    [5]

    Yu. B. Gaididei, R. Berkemer, J. G. Caputo, P. L. Christiansen, A. Kawamoto, T. Shiga, M. P. Sørensen and J. Starke, Analytical solutions of jam pattern formation on a ring for a class of optimal velocity traffic models, New Journal of Phys., 11 (2009), 073012-073030.doi: 10.1088/1367-2630/11/7/073012.

    [6]

    J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields," Springer-Verlag, New York, Heidelberg, Berlin, 1997.

    [7]

    D. Helbing, Traffic and related self-driven many-particle systems, Rev. Modern Phys., 73 (2001), 1067-1141.doi: 10.1103/RevModPhys.73.1067.

    [8]

    V. In, A. Kho, J. D. Neff, A. Palacios, P. Longhini and B. K. Meadows, Experimental observation of multifrequency patterns in arrays of coupled nonlinear oscillators, Phys. Rev. Lett., 91 (2003), 244101-244104.doi: 10.1103/PhysRevLett.91.244101.

    [9]

    V. In, A. Palacios, P. Longhini, A. Kho, J. D. Neff, S. Baglio and B. Ando, Complex behavior in driven unidirectionally coupled overdamped Duffing oscillators, Phys. Rev. E, 73 (2006), 066121-066129.doi: 10.1103/PhysRevE.73.066121.

    [10]

    B. S. Kerner, "The Physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory," Springer, Heidelberg, 2004.

    [11]

    B. S. Kerner, "Introduction to Modern Traffic Flow Theory and Control. The Long Road to Three-Phase Traffic Theory," Springer, Berlin, 2009.doi: 10.1007/978-3-642-02605-8.

    [12]

    T. Nagatani, The physics of traffic jams, Rep. Prog. Phys., 65 (2002), 1331-1386.doi: 10.1088/0034-4885/65/9/203.

    [13]

    C. M. A. Pinto and M. Golubitsky, Central pattern generators for bipedal locomotion, J. Math. Biol., 53 (2006), 474-489.doi: 10.1007/s00285-006-0021-2.

    [14]

    Yu. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S. Tadaki and S. Yukawa, Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam, New Journal of Phys., 10 (2008), 033001-033007.doi: 10.1088/1367-2630/10/3/033001.

    [15]

    A. Takamatsu, R. Tanaka, T. Nakagaki, T. Fujii, and I. Endo, Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum plasmoidal slime mold, Phys. Rev. Lett., 87 (2001), 078102-078105.doi: 10.1103/PhysRevLett.87.078102.

    [16]

    A. Takamatsu, R. Tanaka and T. Fujii, Hidden symmetry in chains of biological coupled oscillators, Phys. Rev. Lett., 92 (2004), 228102-228105.doi: 10.1103/PhysRevLett.92.228102.

    [17]

    K. van der Weele, G. Kannelopulos, C. Tsiavos and D. van der Meer, Transient granular shock waves and upstream motion on a staircase, Phys. Rev. E, 80 (2009), 011305 (16 pages).

    [18]

    S. Wiggins, "Introduction to Applied Dynamical Systems and Chaos," Springer-Verlag, New York, Heidelberg, Berlin, 1990.

    [19]

    D. E. Wolf, M. Schreckenberg and A. Bachem (ed), "Traffic and Granular Flow," World Scientific, Singapore, 1996.

    [20]

    M. Yamamoto, Y. Nomura and Y. Sugiyama, Dissipative system with asymmetric interaction and Hopf bifurcation, Phys. Rev. E, 80 (2009), 026203-026209.doi: 10.1103/PhysRevE.80.026203.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(104) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return