Citation: |
[1] |
N. D. Alikakos, P. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Arch. Rational Mech. Anal, 128 (1994), 165-205.doi: doi:10.1007/BF00375025. |
[2] |
L. Bronsard and B. Stoth, Volume preserving mean curvature flow as a limit of a nonlocal Ginzburg-Landau equation, SIAM J. Math. Anal., 28 (1997), 769-807.doi: doi:10.1137/S0036141094279279. |
[3] |
X. Chen, Spectrums for the Allen-Cahn, Cahn-Hilliard and phase field equations for generic interface, Comm. P.D.E., 19 (1994), 1371-1395.doi: doi:10.1080/03605309408821057. |
[4] |
X. Chen and G. Caginalp, Convergence of the phase field model to its sharp interface limits, European J. Appl. Math., 9 (1998), 417-445.doi: doi:10.1017/S0956792598003520. |
[5] |
X.-F. Chen, S.-I. Ei and M. Mimura, Self-motion of camphor discs model and analysis, to appear in Networks and Heterogeneous Media 4, 1 (2009), 1-18. |
[6] |
X. Chen, D. Hilhorst and E. Logak, Mass conserved Allen-Cahn equation and volume preserving mean curvature flow, to appear, (2010). |
[7] |
C. M. Elliott and H. Garcke, Existence results for diffusive surface motion laws, Adv. Math. Sci. Appl., 7 (1997), 467-490. |
[8] |
J. Escher and G. Simonett, The volume preserving mean curvature flow near spheres, Proc. Amer. Math. Soc., 126 (1998), 2789-2796.doi: doi:10.1090/S0002-9939-98-04727-3. |
[9] |
Y. Hayashima, M. Nagayama and S. Nakata, A camphor grain oscillates while breaking symmetry, in J. Phys. Chem. B, 105 (2001), 5353-5357.doi: doi:10.1021/jp004505n. |
[10] |
G. Huisken, The volume preserving mean curvature flow, J. Reine Angew. Math., 382 (1987), 35-48.doi: doi:10.1515/crll.1987.382.35. |
[11] |
O. A. Ladyhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," American Mathematical Society, Providence, R. I., 1967. |
[12] |
K. Nagai, Spontaneous irregular motion of an alcohol droplet, RIMS Kokyuroku B, 3 (2007), 139-147. |
[13] |
K. Nagai, Y. Sumino, H. Kitahata and K. Yoshikawa, Model selection in the spontaneous motion of an alcohol droplet, Phys. Rev. E., 71 (2005), 065301.doi: doi:10.1103/PhysRevE.71.065301. |
[14] |
K. Nagai, H. Sumino, H. Kitahata and K. Yoshikawa, Change in the mode of spontaneous motion of an alcohol droplet caused by a temperature change, Prog. Theor. Phys., 161 (2006), 286-289.doi: doi:10.1143/PTPS.161.286. |
[15] |
J. Rubinstein and P. Sternberg, Nonlocal reaction-diffusion equations and nucleation, IMA J. of Appl. Math., 48 (1992), 249-264.doi: doi:10.1093/imamat/48.3.249. |