-
Previous Article
An enzyme kinetics model of tumor dormancy, regulation of secondary metastases
- DCDS-S Home
- This Issue
-
Next Article
Boolean models of bistable biological systems
The dynamics of zeroth-order ultrasensitivity: A critical phenomenon in cell biology
1. | College of Mathematics, Jilin University, Changchun 130012, China |
2. | Department of Applied Mathematics, University of Washington, Seattle, WA 98195, United States |
References:
[1] |
D. A. Beard and H. Qian, "Chemical Biophysics: Quantitative Analysis of Cellular Systems," Cambridge Texts Biomed. Engr., Cambridge Univ. Press, London, 2008. |
[2] |
O. G. Berg, J. Paulsson and M. Ehrenberg, Fluctuations and quality of control in biological cells: Zero-order ultrasensitivity reinvestigated, Biophys. J., 79 (2000), 1228-1236.
doi: 10.1016/S0006-3495(00)76377-6. |
[3] |
C. Domb, The critical point: A historical introduction to the modern theory of critical phenomena, Taylor & Francis, London, 1996. |
[4] |
E. H. Fischer and E. G. Krebs, Conversion of phosphorylase b to phosphorylase a in muscle extracts, J. Biol. Chem., 216 (1955), 121-133. |
[5] |
H. Ge and M. Qian, Sensitivity amplification in the phosphorylation-dephosphorylation cycle: Nonequilibrium steady states, chemical master equation, and temporal cooperativity, J. Chem. Phys., 129 (2008), 015104.
doi: 10.1063/1.2948965. |
[6] |
A. Goldbeter and D. E. Koshland, An amplified sensitivity arising from covalent modification in biological systems, Proc. Natl. Acad. Sci. USA, 78 (1981), 6840-6844.
doi: 10.1073/pnas.78.11.6840. |
[7] |
J. Gunawardena, Multisite protein phosphorylation makes a good threshold but can be a poor switch, Proc. Natl. Acad. Sci. USA, 102 (2005), 14617-14622.
doi: 10.1073/pnas.0507322102. |
[8] |
Q. Huang and H. Qian, Ultrasensitive dual phosphorylation dephosphorylation cycle kinetics exhibits canonical competition behavior, Chaos, 19 (2009), 033109.
doi: 10.1063/1.3187790. |
[9] |
N. I. Markevich, J. B. Hoek and B. N. Kholodenko, Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades, J. Cell Biol., 164 (2004), 353-359.
doi: 10.1083/jcb.200308060. |
[10] |
J. D. Murray, "Mathematical Biology I: An Introduction," 3rd Ed., Springer-Verlag, New York, 2002. |
[11] |
D. Poland and H. A. Scheraga, "Theory of Helix-Coil Transitions," Academic Press, New York, 1970. |
[12] |
R. Phillips, J. Kondev and J. Theriot, "Physical Biology of the Cell," Garland Science, New York, 2008. |
[13] |
H. Qian, Thermodynamic and kinetic analysis of sensitivity amplification in biological signal transduction, Biophys. Chem., 105 (2003), 585-593.
doi: 10.1016/S0301-4622(03)00068-1. |
[14] |
H. Qian, Phosphorylation energy hypothesis: Open chemical systems and their biological functions, Ann. Rev. Phys. Chem., 58 (2007), 113-142.
doi: 10.1146/annurev.physchem.58.032806.104550. |
[15] |
H. Qian and J. A. Cooper, Temporal cooperativity and sensitivity amplification in biological signal transduction, Biochem., 47 (2008), 2211-2220.
doi: 10.1021/bi702125s. |
[16] |
E. R. Stadtman and P. B. Chock, Superiority of interconvertible enzyme cascades in metabolic regulation: Analysis of monocyclic systems, Proc. Natl. Acad. Sci. USA, 74 (1977), 2761-2765.
doi: 10.1073/pnas.74.7.2761. |
[17] |
H. E. Stanley, Scaling, universality, and renormalization: Three pillars of modern critical phenomena, Rev. Mod. Phys., 71 (1999), S358-S366.
doi: 10.1103/RevModPhys.71.S358. |
[18] |
M. Thomson and J. Gunawardena, Unlimited multistability in multisite phosphorylation systems, Nature, 460 (2009), 274-277.
doi: 10.1038/nature08102. |
[19] |
Z.-X. Wang, B. Zhou, Q. M. Wang and Z.-Y. Zhang, A kinetic approach for the study of protein phosphatase-catalyzed regulation of protein kinase activity, Biochem., 41 (2002), 7849-7857.
doi: 10.1021/bi025776m. |
show all references
References:
[1] |
D. A. Beard and H. Qian, "Chemical Biophysics: Quantitative Analysis of Cellular Systems," Cambridge Texts Biomed. Engr., Cambridge Univ. Press, London, 2008. |
[2] |
O. G. Berg, J. Paulsson and M. Ehrenberg, Fluctuations and quality of control in biological cells: Zero-order ultrasensitivity reinvestigated, Biophys. J., 79 (2000), 1228-1236.
doi: 10.1016/S0006-3495(00)76377-6. |
[3] |
C. Domb, The critical point: A historical introduction to the modern theory of critical phenomena, Taylor & Francis, London, 1996. |
[4] |
E. H. Fischer and E. G. Krebs, Conversion of phosphorylase b to phosphorylase a in muscle extracts, J. Biol. Chem., 216 (1955), 121-133. |
[5] |
H. Ge and M. Qian, Sensitivity amplification in the phosphorylation-dephosphorylation cycle: Nonequilibrium steady states, chemical master equation, and temporal cooperativity, J. Chem. Phys., 129 (2008), 015104.
doi: 10.1063/1.2948965. |
[6] |
A. Goldbeter and D. E. Koshland, An amplified sensitivity arising from covalent modification in biological systems, Proc. Natl. Acad. Sci. USA, 78 (1981), 6840-6844.
doi: 10.1073/pnas.78.11.6840. |
[7] |
J. Gunawardena, Multisite protein phosphorylation makes a good threshold but can be a poor switch, Proc. Natl. Acad. Sci. USA, 102 (2005), 14617-14622.
doi: 10.1073/pnas.0507322102. |
[8] |
Q. Huang and H. Qian, Ultrasensitive dual phosphorylation dephosphorylation cycle kinetics exhibits canonical competition behavior, Chaos, 19 (2009), 033109.
doi: 10.1063/1.3187790. |
[9] |
N. I. Markevich, J. B. Hoek and B. N. Kholodenko, Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades, J. Cell Biol., 164 (2004), 353-359.
doi: 10.1083/jcb.200308060. |
[10] |
J. D. Murray, "Mathematical Biology I: An Introduction," 3rd Ed., Springer-Verlag, New York, 2002. |
[11] |
D. Poland and H. A. Scheraga, "Theory of Helix-Coil Transitions," Academic Press, New York, 1970. |
[12] |
R. Phillips, J. Kondev and J. Theriot, "Physical Biology of the Cell," Garland Science, New York, 2008. |
[13] |
H. Qian, Thermodynamic and kinetic analysis of sensitivity amplification in biological signal transduction, Biophys. Chem., 105 (2003), 585-593.
doi: 10.1016/S0301-4622(03)00068-1. |
[14] |
H. Qian, Phosphorylation energy hypothesis: Open chemical systems and their biological functions, Ann. Rev. Phys. Chem., 58 (2007), 113-142.
doi: 10.1146/annurev.physchem.58.032806.104550. |
[15] |
H. Qian and J. A. Cooper, Temporal cooperativity and sensitivity amplification in biological signal transduction, Biochem., 47 (2008), 2211-2220.
doi: 10.1021/bi702125s. |
[16] |
E. R. Stadtman and P. B. Chock, Superiority of interconvertible enzyme cascades in metabolic regulation: Analysis of monocyclic systems, Proc. Natl. Acad. Sci. USA, 74 (1977), 2761-2765.
doi: 10.1073/pnas.74.7.2761. |
[17] |
H. E. Stanley, Scaling, universality, and renormalization: Three pillars of modern critical phenomena, Rev. Mod. Phys., 71 (1999), S358-S366.
doi: 10.1103/RevModPhys.71.S358. |
[18] |
M. Thomson and J. Gunawardena, Unlimited multistability in multisite phosphorylation systems, Nature, 460 (2009), 274-277.
doi: 10.1038/nature08102. |
[19] |
Z.-X. Wang, B. Zhou, Q. M. Wang and Z.-Y. Zhang, A kinetic approach for the study of protein phosphatase-catalyzed regulation of protein kinase activity, Biochem., 41 (2002), 7849-7857.
doi: 10.1021/bi025776m. |
[1] |
Francesco Esposito. Symmetry and monotonicity properties of singular solutions to some cooperative semilinear elliptic systems involving critical nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 549-577. doi: 10.3934/dcds.2020022 |
[2] |
Jiahua Zhang, Shu-Cherng Fang, Yifan Xu, Ziteng Wang. A cooperative game with envy. Journal of Industrial and Management Optimization, 2017, 13 (4) : 2049-2066. doi: 10.3934/jimo.2017031 |
[3] |
Pablo Álvarez-Caudevilla, Julián López-Gómez. The dynamics of a class of cooperative systems. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 397-415. doi: 10.3934/dcds.2010.26.397 |
[4] |
İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics and Games, 2021, 8 (3) : 267-275. doi: 10.3934/jdg.2021010 |
[5] |
Esteban Muñoz-Young, Andrés Navas, Enrique Pujals, Carlos H. Vásquez. A continuous Bowen-Mane type phenomenon. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 713-724. doi: 10.3934/dcds.2008.20.713 |
[6] |
Feng Wang, José Ángel Cid, Mirosława Zima. Lyapunov stability for regular equations and applications to the Liebau phenomenon. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4657-4674. doi: 10.3934/dcds.2018204 |
[7] |
Linfeng Mei, Wei Dong, Changhe Guo. Concentration phenomenon in a nonlocal equation modeling phytoplankton growth. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 587-597. doi: 10.3934/dcdsb.2015.20.587 |
[8] |
Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037 |
[9] |
Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359 |
[10] |
Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329 |
[11] |
Charles Pugh, Michael Shub, Alexander Starkov. Unique ergodicity, stable ergodicity, and the Mautner phenomenon for diffeomorphisms. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 845-855. doi: 10.3934/dcds.2006.14.845 |
[12] |
Ludwig Arnold, Igor Chueshov. Cooperative random and stochastic differential equations. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 1-33. doi: 10.3934/dcds.2001.7.1 |
[13] |
A. Marigo, Benedetto Piccoli. Cooperative controls for air traffic management. Communications on Pure and Applied Analysis, 2003, 2 (3) : 355-369. doi: 10.3934/cpaa.2003.2.355 |
[14] |
Alexander Vladimirov. Equicontinuous sweeping processes. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 565-573. doi: 10.3934/dcdsb.2013.18.565 |
[15] |
Uri M. Ascher. Discrete processes and their continuous limits. Journal of Dynamics and Games, 2020, 7 (2) : 123-140. doi: 10.3934/jdg.2020008 |
[16] |
James Broda, Alexander Grigo, Nikola P. Petrov. Convergence rates for semistochastic processes. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 109-125. doi: 10.3934/dcdsb.2019001 |
[17] |
Eleonora Catsigeras. Dynamics of large cooperative pulsed-coupled networks. Journal of Dynamics and Games, 2014, 1 (2) : 255-281. doi: 10.3934/jdg.2014.1.255 |
[18] |
Pablo Álvarez-Caudevilla, Julián López-Gómez. Characterizing the existence of coexistence states in a class of cooperative systems. Conference Publications, 2009, 2009 (Special) : 24-33. doi: 10.3934/proc.2009.2009.24 |
[19] |
Anh Tuan Duong, Quoc Hung Phan. A Liouville-type theorem for cooperative parabolic systems. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 823-833. doi: 10.3934/dcds.2018035 |
[20] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]