-
Previous Article
Backward problems of nonlinear dynamical equations on time scales
- DCDS-S Home
- This Issue
-
Next Article
Update sequence stability in graph dynamical systems
Conjectures for the existence of an idempotent in $\omega $-polynomial algebras
1. | Département de Mathématiques et Informatique Appliquées, Université Paul Valéry, Montpellier III, 34199 Montpellier, France, France |
References:
[1] |
V. M. Abraham, Linearizing quadratic transformations in genetic algebras, Proc. London Math. Soc., (3) 40 (1980), 346-363.
doi: 10.1112/plms/s3-40.2.346. |
[2] |
I. M. H. Etherington, Commutative train algebras of ranks 2 and 3, J. London Math. Soc., 15 (1940), 136-149; Corrigendum ibid., 20 (1945) 238. |
[3] |
J. C. Gutiérrez Fernández, Principal and plenary train algebras, Comm. Algebra, 28 (2000), 653-667.
doi: 10.1080/00927870008826850. |
[4] |
A. Labra and A. Suazo, On plenary algebras of rank 4, Comm. Algebra, 35 (2007), 2744-2752.
doi: 10.1080/00927870701353589. |
[5] |
J. López-Sánchez and E. Rodríguez Santa Maria, On train algebras of rank 4, Comm. Algebra, 24 (1996), 439-445. |
[6] |
C. Mallol and A. Suazo, Une classe d'algèbres pondérées de degré 4, (French) [A class of weighted algebras of degree 4], Comm. Algebra, 28 (2000), 2191-2199.
doi: 10.1080/00927870008826952. |
[7] |
C. Mallol and R. Varro, Les algèbres de mutation, (French) [Mutation algebras], Non-associative algebra and its applications (Oviedo, 1993), 245-250, Math. Appl., 303, Kluwer Acad. Publ., Dordrecht, 1994. |
[8] |
C. Mallol and R. Varro, Algèbres de Mutation et Train algèbres, (French) [Mutation algebras and train algebras] East-West J. Math., 4 (2002), 77-85. |
[9] |
C. Mallol and R. Varro, Sur la Gamétisation et le Rétrocroisement, (French) [Gametization and backcrossing], Algebras Groups Geom., 22 (2005), 49-60. |
[10] |
M. Nourigat, "Étude des $\omega $-PI Algèbres de Degré 4," PhD Thesis, Université de Montpellier II, France, 2008. |
[11] |
R. Varro, Introduction aux algèbres de Bernstein périodiques (cas Moufang, idempotents, caractéristique 2), (French) [Introduction to periodic Bernstein algebras (Moufang case, idempotents, characteristic 2)], Non-associative algebra and its applications (Oviedo, 1993), 384-388, Math. Appl., 303, Kluwer Acad. Publ., Dordrecht, 1994. |
[12] |
S. Walcher, Algebras which satisfy a train equation for the first three plenary powers, Arch. Math. (Basel), 56 (1991), 547-551. |
[13] |
A. Wörz-Busekros, "Algebras in Genetics," Lecture Notes in Biomathematics, 36, Springer-Verlag, Berlin-New York, 1980. |
[14] |
K. A. Zhevlakov, A. M. Slin'ko and I. P. Shestakov, "Rings that are Nearly Associative," Pure and Applied Mathematics, 104, Academic Press, New York-London, 1982. |
show all references
References:
[1] |
V. M. Abraham, Linearizing quadratic transformations in genetic algebras, Proc. London Math. Soc., (3) 40 (1980), 346-363.
doi: 10.1112/plms/s3-40.2.346. |
[2] |
I. M. H. Etherington, Commutative train algebras of ranks 2 and 3, J. London Math. Soc., 15 (1940), 136-149; Corrigendum ibid., 20 (1945) 238. |
[3] |
J. C. Gutiérrez Fernández, Principal and plenary train algebras, Comm. Algebra, 28 (2000), 653-667.
doi: 10.1080/00927870008826850. |
[4] |
A. Labra and A. Suazo, On plenary algebras of rank 4, Comm. Algebra, 35 (2007), 2744-2752.
doi: 10.1080/00927870701353589. |
[5] |
J. López-Sánchez and E. Rodríguez Santa Maria, On train algebras of rank 4, Comm. Algebra, 24 (1996), 439-445. |
[6] |
C. Mallol and A. Suazo, Une classe d'algèbres pondérées de degré 4, (French) [A class of weighted algebras of degree 4], Comm. Algebra, 28 (2000), 2191-2199.
doi: 10.1080/00927870008826952. |
[7] |
C. Mallol and R. Varro, Les algèbres de mutation, (French) [Mutation algebras], Non-associative algebra and its applications (Oviedo, 1993), 245-250, Math. Appl., 303, Kluwer Acad. Publ., Dordrecht, 1994. |
[8] |
C. Mallol and R. Varro, Algèbres de Mutation et Train algèbres, (French) [Mutation algebras and train algebras] East-West J. Math., 4 (2002), 77-85. |
[9] |
C. Mallol and R. Varro, Sur la Gamétisation et le Rétrocroisement, (French) [Gametization and backcrossing], Algebras Groups Geom., 22 (2005), 49-60. |
[10] |
M. Nourigat, "Étude des $\omega $-PI Algèbres de Degré 4," PhD Thesis, Université de Montpellier II, France, 2008. |
[11] |
R. Varro, Introduction aux algèbres de Bernstein périodiques (cas Moufang, idempotents, caractéristique 2), (French) [Introduction to periodic Bernstein algebras (Moufang case, idempotents, characteristic 2)], Non-associative algebra and its applications (Oviedo, 1993), 384-388, Math. Appl., 303, Kluwer Acad. Publ., Dordrecht, 1994. |
[12] |
S. Walcher, Algebras which satisfy a train equation for the first three plenary powers, Arch. Math. (Basel), 56 (1991), 547-551. |
[13] |
A. Wörz-Busekros, "Algebras in Genetics," Lecture Notes in Biomathematics, 36, Springer-Verlag, Berlin-New York, 1980. |
[14] |
K. A. Zhevlakov, A. M. Slin'ko and I. P. Shestakov, "Rings that are Nearly Associative," Pure and Applied Mathematics, 104, Academic Press, New York-London, 1982. |
[1] |
Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017 |
[2] |
Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1115-1129. doi: 10.3934/dcdss.2020066 |
[3] |
Paul Breiding, Türkü Özlüm Çelik, Timothy Duff, Alexander Heaton, Aida Maraj, Anna-Laura Sattelberger, Lorenzo Venturello, Oǧuzhan Yürük. Nonlinear algebra and applications. Numerical Algebra, Control and Optimization, 2021 doi: 10.3934/naco.2021045 |
[4] |
Neşet Deniz Turgay. On the mod p Steenrod algebra and the Leibniz-Hopf algebra. Electronic Research Archive, 2020, 28 (2) : 951-959. doi: 10.3934/era.2020050 |
[5] |
Hari Bercovici, Viorel Niţică. A Banach algebra version of the Livsic theorem. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 523-534. doi: 10.3934/dcds.1998.4.523 |
[6] |
Heinz-Jürgen Flad, Gohar Harutyunyan. Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Conference Publications, 2011, 2011 (Special) : 420-429. doi: 10.3934/proc.2011.2011.420 |
[7] |
Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10. |
[8] |
Viktor Levandovskyy, Gerhard Pfister, Valery G. Romanovski. Evaluating cyclicity of cubic systems with algorithms of computational algebra. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2023-2035. doi: 10.3934/cpaa.2012.11.2023 |
[9] |
Chris Bernhardt. Vertex maps for trees: Algebra and periods of periodic orbits. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 399-408. doi: 10.3934/dcds.2006.14.399 |
[10] |
Pengliang Xu, Xiaomin Tang. Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29 (4) : 2771-2789. doi: 10.3934/era.2021013 |
[11] |
José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Convolutional codes with a matrix-algebra word-ambient. Advances in Mathematics of Communications, 2016, 10 (1) : 29-43. doi: 10.3934/amc.2016.10.29 |
[12] |
Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239 |
[13] |
H. Bercovici, V. Niţică. Cohomology of higher rank abelian Anosov actions for Banach algebra valued cocycles. Conference Publications, 2001, 2001 (Special) : 50-55. doi: 10.3934/proc.2001.2001.50 |
[14] |
A. S. Dzhumadil'daev. Jordan elements and Left-Center of a Free Leibniz algebra. Electronic Research Announcements, 2011, 18: 31-49. doi: 10.3934/era.2011.18.31 |
[15] |
Navin Keswani. Homotopy invariance of relative eta-invariants and $C^*$-algebra $K$-theory. Electronic Research Announcements, 1998, 4: 18-26. |
[16] |
Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453 |
[17] |
Fang Li, Jie Pan. On inner Poisson structures of a quantum cluster algebra without coefficients. Electronic Research Archive, 2021, 29 (5) : 2959-2972. doi: 10.3934/era.2021021 |
[18] |
Qiang Fu, Xin Guo, Sun Young Jeon, Eric N. Reither, Emma Zang, Kenneth C. Land. The uses and abuses of an age-period-cohort method: On the linear algebra and statistical properties of intrinsic and related estimators. Mathematical Foundations of Computing, 2021, 4 (1) : 45-59. doi: 10.3934/mfc.2021001 |
[19] |
Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, 2021, 29 (4) : 2673-2685. doi: 10.3934/era.2021008 |
[20] |
Mark Wilkinson. A Lie algebra-theoretic approach to characterisation of collision invariants of the Boltzmann equation for general convex particles. Kinetic and Related Models, 2022, 15 (2) : 283-315. doi: 10.3934/krm.2022008 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]