February  2011, 4(1): 155-168. doi: 10.3934/dcdss.2011.4.155

Two-point closure based large-eddy simulations in turbulence, Part 1: Isotropic turbulence

1. 

Member of French Academy of Sciences, Laboratory for Geophysical and Industrial Flows, Grenoble

Received  February 2009 Published  October 2010

This is the first of a series of two articles dedicated to Claude-Michel Brauner and Roger Temam on turbulence large-eddy simulations using two-point closures. The present paper deals with applications to isotropic turbulence. First, some personal memories related to my collaboration with Claude-Michel Brauner are given. Then we recall the formalism of large-eddy simulations (LES) of turbulence in physical space for flows of constant density. We consider also a passive scalar, very important for combution applications. Afterwards we study the same problem in Fourier space, on the basis of the Eddy-Damped Quasi-Normal Markovian (EDQNM) theory which is used as subgrid model. This is applied to isotropic turbulence, with particular emphasis put on turbulence decay. We discuss the issue of singularity for Euler equations. We give finally some LES results on pressure statistics.
Citation: Marcel Lesieur. Two-point closure based large-eddy simulations in turbulence, Part 1: Isotropic turbulence. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 155-168. doi: 10.3934/dcdss.2011.4.155
References:
[1]

J. C. André and M. Lesieur, Influence of helicity on high Reynolds number isotropic turbulence, J. Fluid Mech., 81 (1977), 187-207.

[2]

G. Balarac, Private communication, 2007.

[3]

G. K. Batchelor and A. A. Townsend, Decay of vorticity in isotropic turbulence, Proc. Roy. Soc. Series A, 191 (1947), 534-550.

[4]

C. Bogey and C. Bailly, Investigation of downstream and sideline subsonic jet noise using large eddy simulation, Theor. Comp. Fluid Dyn., 20 (2006), 23-40. doi: doi:10.1007/s00162-005-0005-7.

[5]

J. Borue and S. A. Orszag, Spectra in helical three-dimensional homogeneous isotropic turbulence, Phys. Rev. E, 55 (1997), 7005-7009. doi: doi:10.1103/PhysRevE.55.7005.

[6]

C. M. Brauner, M. Frankel, J. Hulshof, et al, Stability and attractors for the quasi-steady equation of cellular flames, Interfaces and free boundaries, 8 (2006), 301-316.

[7]

J. P. Chollet and M. Lesieur, Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures, J. Atmos. Sci., 38 (1981), 2747-2757. doi: doi:10.1175/1520-0469(1981)038<2747:POSSOT>2.0.CO;2.

[8]

Y. Dubief and F. Delcayre, On coherent-vortex identification in turbulence, J. Turb., 1 (2000), 11. doi: doi:10.1088/1468-5248/1/1/011.

[9]

C. Foias and P. Penel, Dissipation totale de l'énergie dans l'équation de Frisch-Kraichnan-Lesieur, C. R. Acad. Sci., Paris, A-B, 280 (1975), A629-A632.

[10]

U. Frisch, "Turbulence: The Legacy of A. N. Kolmogorov," Cambridge University Press, 1995.

[11]

M. Germano, U. Piomelli, P. Moin and W. Cabot, A dynamic subgrid-scale eddy-viscosity model, Phys. Fluids A., 3 (1991), 1760-1765. doi: doi:10.1063/1.857955.

[12]

T. Hughes, L. Mazzei, A. Oberai and A. Wray, The multiscale formulation of large-eddy simulation: decay of homogeneous isotropic turbulence, Phys. Fluids, 13 (2001), 505-512. doi: doi:10.1063/1.1332391.

[13]

J. Hunt, A. Wray and P. Moin, Eddies, stream, and convergence zones in turbulent flows, Center for Turbulence Research Rep., CTR-S88 (1988), 193.

[14]

J. Jimenez, Turbulence, in "Perspectives in Fluid Mechanics" (G. K. Batchelor, H. K. Moffatt and M. G. Woster eds), Cambridge University Press, (2000), 231-283.

[15]

R. H. Kraichnan, Eddy viscosity in two and three dimensions, J. Atmos. Sci., 33 (1976), 1521-1536. doi: doi:10.1175/1520-0469(1976)033<1521:EVITAT>2.0.CO;2.

[16]

E. Lamballais, O. Métais and M. Lesieur, Spectral-dynamic model for large-eddy simulations of turbulent rotating channel flow, Theor. Comp. Fluid Dyn., 12 (1997), 149-177. doi: doi:10.1007/s001620050104.

[17]

J. Leray, Sur le mouvement d'un fluide visqueux emplissant l'espace, (French), J. Acta Math., 63 (1934), 193-248. doi: doi:10.1007/BF02547354.

[18]

M. Lesieur and D. Schertzer, Amortissement auto similaire d'une turbulence à grand nombre de Reynolds, (French), Journal de Mécanique, 17 (1978), 609-646.

[19]

M. Lesieur, S. Ossia and O. Métais, Infrared pressure spectra in two- and three-dimensional isotropic incompressible turbulence, Phys. Fluids, 11 (1999), 1535-1543. doi: doi:10.1063/1.870016.

[20]

M. Lesieur, O. Métais and P. Comte, "Large-Eddy Simulations of Turbulence," With a preface by James J. Riley, Cambridge University Press, New York, 2005.

[21]

M. Lesieur, "Turbulence in Fluids," 4th edition, Springer, 2008. doi: doi:10.1007/978-1-4020-6435-7.

[22]

M. Lesieur and O. Métais, Large-eddy simulations for geophysical fluid dynamics, in "Handbook of Numerical Analysis" (R. Temam, J. Tribbia and P. Ciarlet, eds.), vol XIV, North-Holland, 2008.

[23]

O. Métais and M. Lesieur, Spectral large-eddy simulations of isotropic and stably-stratified turbulence, J. Fluid Mech., 239 (1992), 157-194.

[24]

S. A. Orszag, Analytical theories of turbulence, J. Fluid Mech., 41 (1970), 363-386. doi: doi:10.1017/S0022112070000642.

[25]

J. Smagorinsky, General circulation experiments with the primitive equations, Mon. Weath. Rev., 91 (1963), 99-164.

[26]

A. Wray, Private communication, 1988.

show all references

References:
[1]

J. C. André and M. Lesieur, Influence of helicity on high Reynolds number isotropic turbulence, J. Fluid Mech., 81 (1977), 187-207.

[2]

G. Balarac, Private communication, 2007.

[3]

G. K. Batchelor and A. A. Townsend, Decay of vorticity in isotropic turbulence, Proc. Roy. Soc. Series A, 191 (1947), 534-550.

[4]

C. Bogey and C. Bailly, Investigation of downstream and sideline subsonic jet noise using large eddy simulation, Theor. Comp. Fluid Dyn., 20 (2006), 23-40. doi: doi:10.1007/s00162-005-0005-7.

[5]

J. Borue and S. A. Orszag, Spectra in helical three-dimensional homogeneous isotropic turbulence, Phys. Rev. E, 55 (1997), 7005-7009. doi: doi:10.1103/PhysRevE.55.7005.

[6]

C. M. Brauner, M. Frankel, J. Hulshof, et al, Stability and attractors for the quasi-steady equation of cellular flames, Interfaces and free boundaries, 8 (2006), 301-316.

[7]

J. P. Chollet and M. Lesieur, Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closures, J. Atmos. Sci., 38 (1981), 2747-2757. doi: doi:10.1175/1520-0469(1981)038<2747:POSSOT>2.0.CO;2.

[8]

Y. Dubief and F. Delcayre, On coherent-vortex identification in turbulence, J. Turb., 1 (2000), 11. doi: doi:10.1088/1468-5248/1/1/011.

[9]

C. Foias and P. Penel, Dissipation totale de l'énergie dans l'équation de Frisch-Kraichnan-Lesieur, C. R. Acad. Sci., Paris, A-B, 280 (1975), A629-A632.

[10]

U. Frisch, "Turbulence: The Legacy of A. N. Kolmogorov," Cambridge University Press, 1995.

[11]

M. Germano, U. Piomelli, P. Moin and W. Cabot, A dynamic subgrid-scale eddy-viscosity model, Phys. Fluids A., 3 (1991), 1760-1765. doi: doi:10.1063/1.857955.

[12]

T. Hughes, L. Mazzei, A. Oberai and A. Wray, The multiscale formulation of large-eddy simulation: decay of homogeneous isotropic turbulence, Phys. Fluids, 13 (2001), 505-512. doi: doi:10.1063/1.1332391.

[13]

J. Hunt, A. Wray and P. Moin, Eddies, stream, and convergence zones in turbulent flows, Center for Turbulence Research Rep., CTR-S88 (1988), 193.

[14]

J. Jimenez, Turbulence, in "Perspectives in Fluid Mechanics" (G. K. Batchelor, H. K. Moffatt and M. G. Woster eds), Cambridge University Press, (2000), 231-283.

[15]

R. H. Kraichnan, Eddy viscosity in two and three dimensions, J. Atmos. Sci., 33 (1976), 1521-1536. doi: doi:10.1175/1520-0469(1976)033<1521:EVITAT>2.0.CO;2.

[16]

E. Lamballais, O. Métais and M. Lesieur, Spectral-dynamic model for large-eddy simulations of turbulent rotating channel flow, Theor. Comp. Fluid Dyn., 12 (1997), 149-177. doi: doi:10.1007/s001620050104.

[17]

J. Leray, Sur le mouvement d'un fluide visqueux emplissant l'espace, (French), J. Acta Math., 63 (1934), 193-248. doi: doi:10.1007/BF02547354.

[18]

M. Lesieur and D. Schertzer, Amortissement auto similaire d'une turbulence à grand nombre de Reynolds, (French), Journal de Mécanique, 17 (1978), 609-646.

[19]

M. Lesieur, S. Ossia and O. Métais, Infrared pressure spectra in two- and three-dimensional isotropic incompressible turbulence, Phys. Fluids, 11 (1999), 1535-1543. doi: doi:10.1063/1.870016.

[20]

M. Lesieur, O. Métais and P. Comte, "Large-Eddy Simulations of Turbulence," With a preface by James J. Riley, Cambridge University Press, New York, 2005.

[21]

M. Lesieur, "Turbulence in Fluids," 4th edition, Springer, 2008. doi: doi:10.1007/978-1-4020-6435-7.

[22]

M. Lesieur and O. Métais, Large-eddy simulations for geophysical fluid dynamics, in "Handbook of Numerical Analysis" (R. Temam, J. Tribbia and P. Ciarlet, eds.), vol XIV, North-Holland, 2008.

[23]

O. Métais and M. Lesieur, Spectral large-eddy simulations of isotropic and stably-stratified turbulence, J. Fluid Mech., 239 (1992), 157-194.

[24]

S. A. Orszag, Analytical theories of turbulence, J. Fluid Mech., 41 (1970), 363-386. doi: doi:10.1017/S0022112070000642.

[25]

J. Smagorinsky, General circulation experiments with the primitive equations, Mon. Weath. Rev., 91 (1963), 99-164.

[26]

A. Wray, Private communication, 1988.

[1]

Marcel Lesieur. Two-point closure based large-eddy simulations in turbulence. Part 2: Inhomogeneous cases. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 227-241. doi: 10.3934/dcds.2010.28.227

[2]

Wen-Chiao Cheng. Two-point pre-image entropy. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 107-119. doi: 10.3934/dcds.2007.17.107

[3]

Feliz Minhós, A. I. Santos. Higher order two-point boundary value problems with asymmetric growth. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 127-137. doi: 10.3934/dcdss.2008.1.127

[4]

Wenming Zou. Multiple solutions results for two-point boundary value problem with resonance. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 485-496. doi: 10.3934/dcds.1998.4.485

[5]

Jerry L. Bona, Hongqiu Chen, Shu-Ming Sun, Bing-Yu Zhang. Comparison of quarter-plane and two-point boundary value problems: The KdV-equation. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 465-495. doi: 10.3934/dcdsb.2007.7.465

[6]

Xiao-Yu Zhang, Qing Fang. A sixth order numerical method for a class of nonlinear two-point boundary value problems. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 31-43. doi: 10.3934/naco.2012.2.31

[7]

Jerry Bona, Hongqiu Chen, Shu Ming Sun, B.-Y. Zhang. Comparison of quarter-plane and two-point boundary value problems: the BBM-equation. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 921-940. doi: 10.3934/dcds.2005.13.921

[8]

Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839

[9]

Isaac Harris, Dinh-Liem Nguyen, Thi-Phong Nguyen. Direct sampling methods for isotropic and anisotropic scatterers with point source measurements. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022015

[10]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[11]

Carlos Escudero, Fabricio Macià, Raúl Toral, Juan J. L. Velázquez. Kinetic theory and numerical simulations of two-species coagulation. Kinetic and Related Models, 2014, 7 (2) : 253-290. doi: 10.3934/krm.2014.7.253

[12]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic and Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[13]

Diego Samuel Rodrigues, Paulo Fernando de Arruda Mancera. Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response. Mathematical Biosciences & Engineering, 2013, 10 (1) : 221-234. doi: 10.3934/mbe.2013.10.221

[14]

K. Q. Lan, G. C. Yang. Optimal constants for two point boundary value problems. Conference Publications, 2007, 2007 (Special) : 624-633. doi: 10.3934/proc.2007.2007.624

[15]

Eleftherios Gkioulekas, Ka Kit Tung. On the double cascades of energy and enstrophy in two dimensional turbulence. Part 1. Theoretical formulation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 79-102. doi: 10.3934/dcdsb.2005.5.79

[16]

Luigi C. Berselli, Argus Adrian Dunca, Roger Lewandowski, Dinh Duong Nguyen. Modeling error of $ \alpha $-models of turbulence on a two-dimensional torus. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4613-4643. doi: 10.3934/dcdsb.2020305

[17]

Kai-Uwe Schmidt, Jonathan Jedwab, Matthew G. Parker. Two binary sequence families with large merit factor. Advances in Mathematics of Communications, 2009, 3 (2) : 135-156. doi: 10.3934/amc.2009.3.135

[18]

François Baccelli, Augustin Chaintreau, Danny De Vleeschauwer, David R. McDonald. HTTP turbulence. Networks and Heterogeneous Media, 2006, 1 (1) : 1-40. doi: 10.3934/nhm.2006.1.1

[19]

Michael Cranston, Benjamin Gess, Michael Scheutzow. Weak synchronization for isotropic flows. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3003-3014. doi: 10.3934/dcdsb.2016084

[20]

Luca Bisconti, Davide Catania. Global well-posedness of the two-dimensional horizontally filtered simplified Bardina turbulence model on a strip-like region. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1861-1881. doi: 10.3934/cpaa.2017090

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (119)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]