-
Previous Article
Periodic solutions of a model for tumor virotherapy
- DCDS-S Home
- This Issue
-
Next Article
Topology and dynamics of boolean networks with strong inhibition
Algebraic model of non-Mendelian inheritance
1. | Mathematics Department, College of William and Mary, Williamsburg, VA 23187, United States |
References:
[1] |
C. W. Jr. Birky, The inheritance of genes in mitochondria and chloroplasts: Laws, mechanisms, and models, Annu. Rev. Genet., 35 (2001), 125-148.
doi: 10.1146/annurev.genet.35.102401.090231. |
[2] |
C. W. Jr. Birky, "Inheritance of Mitochondrial Mutations," Mitochondrial DNA Mutations and Aging, Disease and Cancer, K.K. Singh, edit, Spring, 1998. |
[3] |
Jianjun Paul Tian, "Evolution Algebras and their Applications," Lecture Note in Mathematics, 1921, Springer, Berlin, 2008. |
[4] |
G. Mendel, "Experiments in Plant-Hybridization," Classic Papers in Genetics, 1-20, J. A. Peter editor, Prentice-Hall Inc. 1959. |
[5] |
Y. I. Lyubich, "Mathematical Structures in Population Genetics," Springer-Verlag, New York, 1992. |
[6] |
A. Worz-Busekros, "Algebras in Genetics," Lecture Notes in Biomath. 36, Springer-Verlag, Berlin-New York, 1980. |
[7] |
M. L. Reed, Algebraic structure of genetic inheritance, Bull. of AMS, 34 (1997), 107-130.
doi: 10.1090/S0273-0979-97-00712-X. |
[8] |
N. W. Gillham, "Organelle Genes and Genomes," Oxford University Press, 1994. |
[9] |
C. F. Emmerson, G. K. Brown and J. Poulton, Synthesis of mitochondrial DNA in permeabilised human cultured cells, Nucleic Acids Res., 29 (2001), e1-e1(1). |
[10] |
F. Ling and T. Shibata, Mhr1p-dependent concatemeric mitochondrial DNA formation for generating yeast mitochondrial homoplasmic cells, Mol. Biol. Cell, 15 (2004), 310-322.
doi: 10.1091/mbc.E03-07-0508. |
[11] |
Y. Tang, G. Manfredi, M. Hirano and E. A. Schon, Maintenance of human rearranged mitochondrial DNAs in long-term transmitochondrial cell lines, Mol. Biol. Cell, 11 (2000), 2349-2358. |
[12] |
F. M. A. Samen, G. A. Secor and N. C. Gudmestad, Variability in virulence among asexual progenies of Phytophthora infestans, Phytopathology, 93 (2003), 293-304.
doi: 10.1094/PHYTO.2003.93.3.293. |
[13] |
W. E. Fry, and S. B. Goodwin, Re-emergence of potato and tomato late blight in the United States, Plant Disease, 81 (1997), 1349-1357.
doi: 10.1094/PDIS.1997.81.12.1349. |
show all references
References:
[1] |
C. W. Jr. Birky, The inheritance of genes in mitochondria and chloroplasts: Laws, mechanisms, and models, Annu. Rev. Genet., 35 (2001), 125-148.
doi: 10.1146/annurev.genet.35.102401.090231. |
[2] |
C. W. Jr. Birky, "Inheritance of Mitochondrial Mutations," Mitochondrial DNA Mutations and Aging, Disease and Cancer, K.K. Singh, edit, Spring, 1998. |
[3] |
Jianjun Paul Tian, "Evolution Algebras and their Applications," Lecture Note in Mathematics, 1921, Springer, Berlin, 2008. |
[4] |
G. Mendel, "Experiments in Plant-Hybridization," Classic Papers in Genetics, 1-20, J. A. Peter editor, Prentice-Hall Inc. 1959. |
[5] |
Y. I. Lyubich, "Mathematical Structures in Population Genetics," Springer-Verlag, New York, 1992. |
[6] |
A. Worz-Busekros, "Algebras in Genetics," Lecture Notes in Biomath. 36, Springer-Verlag, Berlin-New York, 1980. |
[7] |
M. L. Reed, Algebraic structure of genetic inheritance, Bull. of AMS, 34 (1997), 107-130.
doi: 10.1090/S0273-0979-97-00712-X. |
[8] |
N. W. Gillham, "Organelle Genes and Genomes," Oxford University Press, 1994. |
[9] |
C. F. Emmerson, G. K. Brown and J. Poulton, Synthesis of mitochondrial DNA in permeabilised human cultured cells, Nucleic Acids Res., 29 (2001), e1-e1(1). |
[10] |
F. Ling and T. Shibata, Mhr1p-dependent concatemeric mitochondrial DNA formation for generating yeast mitochondrial homoplasmic cells, Mol. Biol. Cell, 15 (2004), 310-322.
doi: 10.1091/mbc.E03-07-0508. |
[11] |
Y. Tang, G. Manfredi, M. Hirano and E. A. Schon, Maintenance of human rearranged mitochondrial DNAs in long-term transmitochondrial cell lines, Mol. Biol. Cell, 11 (2000), 2349-2358. |
[12] |
F. M. A. Samen, G. A. Secor and N. C. Gudmestad, Variability in virulence among asexual progenies of Phytophthora infestans, Phytopathology, 93 (2003), 293-304.
doi: 10.1094/PHYTO.2003.93.3.293. |
[13] |
W. E. Fry, and S. B. Goodwin, Re-emergence of potato and tomato late blight in the United States, Plant Disease, 81 (1997), 1349-1357.
doi: 10.1094/PDIS.1997.81.12.1349. |
[1] |
Jianjun Tian, Bai-Lian Li. Coalgebraic Structure of Genetic Inheritance. Mathematical Biosciences & Engineering, 2004, 1 (2) : 243-266. doi: 10.3934/mbe.2004.1.243 |
[2] |
Doston Jumaniyozov, Ivan Kaygorodov, Abror Khudoyberdiyev. The algebraic classification of nilpotent commutative algebras. Electronic Research Archive, 2021, 29 (6) : 3909-3993. doi: 10.3934/era.2021068 |
[3] |
Grégory Berhuy. Algebraic space-time codes based on division algebras with a unitary involution. Advances in Mathematics of Communications, 2014, 8 (2) : 167-189. doi: 10.3934/amc.2014.8.167 |
[4] |
Jesse Berwald, Marian Gidea. Critical transitions in a model of a genetic regulatory system. Mathematical Biosciences & Engineering, 2014, 11 (4) : 723-740. doi: 10.3934/mbe.2014.11.723 |
[5] |
Feng Rong. Non-algebraic attractors on $\mathbf{P}^k$. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 977-989. doi: 10.3934/dcds.2012.32.977 |
[6] |
JinHyon Kim, HyonHui Ju, WiJong An. Inheritance of $ {\mathscr F}- $chaos and $ {\mathscr F}- $sensitivities under an iteration for non-autonomous discrete systems. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022053 |
[7] |
Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755 |
[8] |
Antonio Algaba, Natalia Fuentes, Cristóbal García, Manuel Reyes. Non-formally integrable centers admitting an algebraic inverse integrating factor. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 967-988. doi: 10.3934/dcds.2018041 |
[9] |
Pieter C. Allaart. An algebraic approach to entropy plateaus in non-integer base expansions. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6507-6522. doi: 10.3934/dcds.2019282 |
[10] |
Ping-Chen Lin. Portfolio optimization and risk measurement based on non-dominated sorting genetic algorithm. Journal of Industrial and Management Optimization, 2012, 8 (3) : 549-564. doi: 10.3934/jimo.2012.8.549 |
[11] |
Jiao-Yan Li, Xiao Hu, Zhong Wan. An integrated bi-objective optimization model and improved genetic algorithm for vehicle routing problems with temporal and spatial constraints. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1203-1220. doi: 10.3934/jimo.2018200 |
[12] |
Boris Khots, Dmitriy Khots. P-groups applications in genetics. Conference Publications, 2001, 2001 (Special) : 224-228. doi: 10.3934/proc.2001.2001.224 |
[13] |
Liu Liu, Weinian Zhang. Genetics of iterative roots for PM functions. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2391-2409. doi: 10.3934/dcds.2020369 |
[14] |
Zhilan Feng, Carlos Castillo-Chavez. The influence of infectious diseases on population genetics. Mathematical Biosciences & Engineering, 2006, 3 (3) : 467-483. doi: 10.3934/mbe.2006.3.467 |
[15] |
Daniele Bartoli, Leo Storme. On the functional codes arising from the intersections of algebraic hypersurfaces of small degree with a non-singular quadric. Advances in Mathematics of Communications, 2014, 8 (3) : 271-280. doi: 10.3934/amc.2014.8.271 |
[16] |
Tadahiro Oh, Mamoru Okamoto, Oana Pocovnicu. On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3479-3520. doi: 10.3934/dcds.2019144 |
[17] |
A. A. Kirillov. Family algebras. Electronic Research Announcements, 2000, 6: 7-20. |
[18] |
Reinhard Bürger. A survey of migration-selection models in population genetics. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 883-959. doi: 10.3934/dcdsb.2014.19.883 |
[19] |
Peng Zhou, Jiang Yu, Dongmei Xiao. A nonlinear diffusion problem arising in population genetics. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 821-841. doi: 10.3934/dcds.2014.34.821 |
[20] |
Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]