December  2011, 4(6): 1599-1610. doi: 10.3934/dcdss.2011.4.1599

Novel dynamics of a simple Daphnia-microparasite model with dose-dependent infection

1. 

Department of Mathematics, College of Medicine, Third Military Medical University, Chongqing, 400038

2. 

School of Mathematics and Statistical Sciences, Arizona State University, Tempe, AZ 85281

Received  March 2009 Revised  September 2009 Published  December 2010

Many experiments reveal that Daphnia and its microparasite populations vary strongly in density and typically go through pronounced cycles. To better understand such dynamics, we formulate a simple two dimensional autonomous ordinary differential equation model for Daphnia magna-microparasite infection with dose-dependent infection. This model has a basic parasite production number $R_0=0$, yet its dynamics is much richer than that of the classical mathematical models for host-parasite interactions. In particular, Hopf bifurcation, stable limit cycle, homoclinic and heteroclinic orbit can be produced with suitable parameter values. The model indicates that intermediate levels of parasite virulence or host growth rate generate more complex infection dynamics.
Citation: Kaifa Wang, Yang Kuang. Novel dynamics of a simple Daphnia-microparasite model with dose-dependent infection. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1599-1610. doi: 10.3934/dcdss.2011.4.1599
References:
[1]

R. M. Anderson and R. M. May, Population biology of infectious diseases I, Nature (London), 280 (1979), 361-367. doi: 10.1038/280361a0.

[2]

R. M. Anderson and R. M. May, The population dynamics of microparasites and their invertebrate hosts, Phil. Tran. R. Soc. Lond. B, 291 (1981), 451-524. doi: 10.1098/rstb.1981.0005.

[3]

D. Ebert, Infectivity, multiple infections, and the genetic correlation between withinhost growth and parasite virulence: A reply to Hochberg, Evolution, 52 (1998), 1869-1871. doi: 10.2307/2411360.

[4]

D. Ebert, "Ecology, Epidemiology, and Evolution of Parasitism in Daphnia," [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books, 2005.

[5]

D. Ebert, M. Lipsitch and K. L. Mangin, The effect of parasites on host population density and extinction: Experimental epidemiology with Daphnia and six microparasites, Am. Nat., 156 (2000), 459-477. doi: 10.1086/303404.

[6]

D. Ebert, C. D. Zschokke-Rohringer and H. J. Carius, Dose effects and density-dependent regulation of two microparasites of Daphnia magna, Oecologia, 122 (2000), 200-209. doi: 10.1007/PL00008847.

[7]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillation, Dynamixal Systems and Bifurcations of Vector Fields," Springer-Verlag. 1983.

[8]

T. W. Hwang and Y. Kuang, Deterministic extinction effect of parasites on host populations, J. Math. Biol., 46 (2003), 17-30. doi: 10.1007/s00285-002-0165-7.

[9]

T. W. Hwang and Y. Kuang, Host extinction dynamics in a simple parasite-host interaction model, Math. Biosci. Eng., 2 (2005), 743-751.

[10]

A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883. doi: 10.1016/j.bulm.2004.02.001.

[11]

W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204. doi: 10.1007/BF00276956.

[12]

L. Perko, "Differential Equations and Dynamical Systems," Springer, New York, 1996.

[13]

R. R. Regoes, D. Ebert and S. Bonhoeffer, Dose-dependent infection rates of parasites produce the Allee effect in epidemiology, Proc. R. Soc. Lond. B, 269 (2002), 271-279. doi: 10.1098/rspb.2001.1816.

[14]

S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differential Equations, 188 (2003), 135-163. doi: 10.1016/S0022-0396(02)00089-X.

[15]

P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[16]

H. Wang, K. Dunning, J. J. Elser and Y. Kuang, Daphnia species invasion, competitive exclusion, and chaotic coexistence, Discrete Continuous Dynam. Systems - B, 12 (2009), 481-493.

[17]

D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-429. doi: 10.1016/j.mbs.2006.09.025.

[18]

Y. Yu, J.J. Nieto, A. Torres and K. Wang, A viral infection model with a nonlinear infection rate, Bound. Value Probl., (2009), doi:10.1155/2009/958016.

show all references

References:
[1]

R. M. Anderson and R. M. May, Population biology of infectious diseases I, Nature (London), 280 (1979), 361-367. doi: 10.1038/280361a0.

[2]

R. M. Anderson and R. M. May, The population dynamics of microparasites and their invertebrate hosts, Phil. Tran. R. Soc. Lond. B, 291 (1981), 451-524. doi: 10.1098/rstb.1981.0005.

[3]

D. Ebert, Infectivity, multiple infections, and the genetic correlation between withinhost growth and parasite virulence: A reply to Hochberg, Evolution, 52 (1998), 1869-1871. doi: 10.2307/2411360.

[4]

D. Ebert, "Ecology, Epidemiology, and Evolution of Parasitism in Daphnia," [Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Books, 2005.

[5]

D. Ebert, M. Lipsitch and K. L. Mangin, The effect of parasites on host population density and extinction: Experimental epidemiology with Daphnia and six microparasites, Am. Nat., 156 (2000), 459-477. doi: 10.1086/303404.

[6]

D. Ebert, C. D. Zschokke-Rohringer and H. J. Carius, Dose effects and density-dependent regulation of two microparasites of Daphnia magna, Oecologia, 122 (2000), 200-209. doi: 10.1007/PL00008847.

[7]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillation, Dynamixal Systems and Bifurcations of Vector Fields," Springer-Verlag. 1983.

[8]

T. W. Hwang and Y. Kuang, Deterministic extinction effect of parasites on host populations, J. Math. Biol., 46 (2003), 17-30. doi: 10.1007/s00285-002-0165-7.

[9]

T. W. Hwang and Y. Kuang, Host extinction dynamics in a simple parasite-host interaction model, Math. Biosci. Eng., 2 (2005), 743-751.

[10]

A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879-883. doi: 10.1016/j.bulm.2004.02.001.

[11]

W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204. doi: 10.1007/BF00276956.

[12]

L. Perko, "Differential Equations and Dynamical Systems," Springer, New York, 1996.

[13]

R. R. Regoes, D. Ebert and S. Bonhoeffer, Dose-dependent infection rates of parasites produce the Allee effect in epidemiology, Proc. R. Soc. Lond. B, 269 (2002), 271-279. doi: 10.1098/rspb.2001.1816.

[14]

S. Ruan and W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differential Equations, 188 (2003), 135-163. doi: 10.1016/S0022-0396(02)00089-X.

[15]

P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[16]

H. Wang, K. Dunning, J. J. Elser and Y. Kuang, Daphnia species invasion, competitive exclusion, and chaotic coexistence, Discrete Continuous Dynam. Systems - B, 12 (2009), 481-493.

[17]

D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-429. doi: 10.1016/j.mbs.2006.09.025.

[18]

Y. Yu, J.J. Nieto, A. Torres and K. Wang, A viral infection model with a nonlinear infection rate, Bound. Value Probl., (2009), doi:10.1155/2009/958016.

[1]

Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1293-1322. doi: 10.3934/dcds.2003.9.1293

[2]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, 2021, 29 (5) : 2987-3015. doi: 10.3934/era.2021023

[3]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[4]

Stephen Pankavich, Nathan Neri, Deborah Shutt. Bistable dynamics and Hopf bifurcation in a refined model of early stage HIV infection. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 2867-2893. doi: 10.3934/dcdsb.2020044

[5]

Hossein Mohebbi, Azim Aminataei, Cameron J. Browne, Mohammad Reza Razvan. Hopf bifurcation of an age-structured virus infection model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 861-885. doi: 10.3934/dcdsb.2018046

[6]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[7]

Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883

[8]

Benoît Grébert, Tiphaine Jézéquel, Laurent Thomann. Dynamics of Klein-Gordon on a compact surface near a homoclinic orbit. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3485-3510. doi: 10.3934/dcds.2014.34.3485

[9]

W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351

[10]

Tongtong Chen, Jixun Chu. Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022082

[11]

Peng Chen, Linfeng Mei, Xianhua Tang. Nonstationary homoclinic orbit for an infinite-dimensional fractional reaction-diffusion system. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021279

[12]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[13]

Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91

[14]

Stefano Galatolo. Orbit complexity and data compression. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 477-486. doi: 10.3934/dcds.2001.7.477

[15]

Peng Sun. Minimality and gluing orbit property. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4041-4056. doi: 10.3934/dcds.2019162

[16]

Shiqiu Liu, Frédérique Oggier. On applications of orbit codes to storage. Advances in Mathematics of Communications, 2016, 10 (1) : 113-130. doi: 10.3934/amc.2016.10.113

[17]

Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022069

[18]

Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419

[19]

Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803

[20]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]