-
Previous Article
Dynamics of boolean networks
- DCDS-S Home
- This Issue
-
Next Article
On fuzzy filters of Heyting-algebras
Turing instability in a coupled predator-prey model with different Holling type functional responses
1. | Department of Mathematics and Computer Science, Virginia State University, Petersburg, Virginia 23806 |
References:
[1] |
X. Chen, Y. Qi and M. Wang, A strongly coupled predator-prey system with non-monotonic functional response, Nonl. Anal.: TMA, 67 (2007), 1966-1979.
doi: 10.1016/j.na.2006.08.022. |
[2] |
L. Chen and A. Jungel, Analysis of a parabolic cross-diffusion population model without self-diffusion, J. Differential Equations, 224 (2006), 39-59.
doi: 10.1016/j.jde.2005.08.002. |
[3] |
Y. H. Du and Y. Lou, Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation, Roy. Soc. Edinburgh Sect. A, 131 (2001), 321-349.
doi: 10.1017/S0308210500000895. |
[4] |
Y. H. Du and J. P. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment, Nonlinear Dynamics and Evolution Equations, in: Fields Inst. Commun., Vol. 48, Amer. Math. Soc., Providence, RI, 2006, 95-135. |
[5] |
Y. H. Du and J. P. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.
doi: 10.1016/j.jde.2006.01.013. |
[6] |
Y. H. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Amer. Math. Soc., 359 (2007), 4557-4593 (electronic).
doi: 10.1090/S0002-9947-07-04262-6. |
[7] |
S. M. Fu, Z. J. Wen and S. B. Cui, On global solutions for the three-species food-chain model with cross-diffusion, ACTA Mathematica Sinica, Chinese Series, 50 (2007), 75-80. |
[8] |
L. Hei, Global bifurcation of co-existence states for a predator-prey-mutualist model with diffusion, Nonl. Ana.: RWA, 8 (2007), 619-635.
doi: 10.1016/j.nonrwa.2006.01.006. |
[9] |
C. S. Holling, The components of predation as revealed by a study of small mammal predation of the European pine sawfly, Canad. Entomol., 91 (1959), 293-320.
doi: 10.4039/Ent91293-5. |
[10] |
C. S. Holling, Some characteristics of simple types of predation and parasitism, Canad. Entomol., 91 (1959), 385-398.
doi: 10.4039/Ent91385-7. |
[11] |
X. J. Hou and A. W. Leung, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics, Nonlinear Anal. Real World Appl., 9 (2008), 2196-2213.
doi: 10.1016/j.nonrwa.2007.07.007. |
[12] |
S. B. Hsu and J. P. Shi, Relaxation oscillation profile of limit cycle in predator-prey system, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 893-911.
doi: 10.3934/dcdsb.2009.11.893. |
[13] |
J. Von Hardenberg, E. Meron, M. Shachak and Y. Zarmi, Diversity of vegetation patterns and desertification, Phys. Rev. Lett., 87 (2001), 198101.
doi: 10.1103/PhysRevLett.87.198101. |
[14] |
A. J. Lotka, "Elements of Physical Biology," Baltimore: Williams & Wilkins Co., 1925. |
[15] |
E. Meron, E. Gilad, J. von Hardenberg, M. Shachak and Y. Zarmi, Vegetation patterns along a rainfall gradient, Chaos Solitons Fractals, 19 (2004), 367-376.
doi: 10.1016/S0960-0779(03)00049-3. |
[16] |
K. Ik Kim and Z. Lin, Coexistence of three species in a strongly coupled elliptic system, Nonl. Anal., 55 (2003), 313-333.
doi: 10.1016/S0362-546X(03)00242-6. |
[17] |
T. Kadota and K. Kuto, Positive steady states for a prey-predator model with some nonlinear diffusion terms, J. Math. Anal. Appl., 323 (2006), 1387-1401.
doi: 10.1016/j.jmaa.2005.11.065. |
[18] |
K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 315-348.
doi: 10.1016/j.jde.2003.08.003. |
[19] |
C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations, 72 (1988), 1-27.
doi: 10.1016/0022-0396(88)90147-7. |
[20] |
J. D. Murray, "Mathematical Biology. Third Edition. I. An Introduction," Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002; II. Spatial models and biomedical applications. Interdisciplinary Applied Mathematics, 18, Springer-Verlag, New York, 2003. |
[21] |
A. Okubo, "Diffusion and Ecological Problems: Mathematical Models, An Extended Version of the Japanese Edition, Ecology and Diffusion," Translated by G. N. Parker. Biomathematics, 10, Springer-Verlag, Berlin-New York, 1980. |
[22] |
P. Y. H. Pang and M. Wang, Strategy and stationary pattern in a three-species predator-prey model, J. Differential Equations, 200 (2004), 245-273; (2004), 1065-1089. |
[23] |
J. P. Shi, Z. F. Xie and K. Little, Cross-diffusion induced instability and stability in reaction-diffusion systems, Preprint. |
[24] |
F. Yi, J. Wei and J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.
doi: 10.1016/j.jde.2008.10.024. |
[25] |
A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Royal Soc. London B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
[26] |
V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Mem. R. Accad. Naz. dei Lincei. Ser. VI, 2 (1926). |
[27] |
M. Wang, Stationary patterns of strongly coupled prey-predator models, J. Math. Anal. Appl., 292 (2004), 484-505.
doi: 10.1016/j.jmaa.2003.12.027. |
[28] |
X. Wang, Qualitative behavior of solutions of chemotactic diffusion systems: Effects of motility and chemotaxis and dynamics, SIAM J. Math. Anal., 31 (2000), 535-560.
doi: 10.1137/S0036141098339897. |
[29] |
C. S. Zhao, Asymptotic behaviors of a class of $N$-Laplacian Neumann problems with large diffusion, Nonlinear Anal., 69 (2008), 2496-2524.
doi: 10.1016/j.na.2007.08.028. |
[30] |
X. Zeng, Non-constant positive steady states of a prey-predator system with cross-diffusions, J. Math. Anal. Appl., 332 (2007), 989-1009.
doi: 10.1016/j.jmaa.2006.10.075. |
show all references
References:
[1] |
X. Chen, Y. Qi and M. Wang, A strongly coupled predator-prey system with non-monotonic functional response, Nonl. Anal.: TMA, 67 (2007), 1966-1979.
doi: 10.1016/j.na.2006.08.022. |
[2] |
L. Chen and A. Jungel, Analysis of a parabolic cross-diffusion population model without self-diffusion, J. Differential Equations, 224 (2006), 39-59.
doi: 10.1016/j.jde.2005.08.002. |
[3] |
Y. H. Du and Y. Lou, Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation, Roy. Soc. Edinburgh Sect. A, 131 (2001), 321-349.
doi: 10.1017/S0308210500000895. |
[4] |
Y. H. Du and J. P. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment, Nonlinear Dynamics and Evolution Equations, in: Fields Inst. Commun., Vol. 48, Amer. Math. Soc., Providence, RI, 2006, 95-135. |
[5] |
Y. H. Du and J. P. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.
doi: 10.1016/j.jde.2006.01.013. |
[6] |
Y. H. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Amer. Math. Soc., 359 (2007), 4557-4593 (electronic).
doi: 10.1090/S0002-9947-07-04262-6. |
[7] |
S. M. Fu, Z. J. Wen and S. B. Cui, On global solutions for the three-species food-chain model with cross-diffusion, ACTA Mathematica Sinica, Chinese Series, 50 (2007), 75-80. |
[8] |
L. Hei, Global bifurcation of co-existence states for a predator-prey-mutualist model with diffusion, Nonl. Ana.: RWA, 8 (2007), 619-635.
doi: 10.1016/j.nonrwa.2006.01.006. |
[9] |
C. S. Holling, The components of predation as revealed by a study of small mammal predation of the European pine sawfly, Canad. Entomol., 91 (1959), 293-320.
doi: 10.4039/Ent91293-5. |
[10] |
C. S. Holling, Some characteristics of simple types of predation and parasitism, Canad. Entomol., 91 (1959), 385-398.
doi: 10.4039/Ent91385-7. |
[11] |
X. J. Hou and A. W. Leung, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics, Nonlinear Anal. Real World Appl., 9 (2008), 2196-2213.
doi: 10.1016/j.nonrwa.2007.07.007. |
[12] |
S. B. Hsu and J. P. Shi, Relaxation oscillation profile of limit cycle in predator-prey system, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 893-911.
doi: 10.3934/dcdsb.2009.11.893. |
[13] |
J. Von Hardenberg, E. Meron, M. Shachak and Y. Zarmi, Diversity of vegetation patterns and desertification, Phys. Rev. Lett., 87 (2001), 198101.
doi: 10.1103/PhysRevLett.87.198101. |
[14] |
A. J. Lotka, "Elements of Physical Biology," Baltimore: Williams & Wilkins Co., 1925. |
[15] |
E. Meron, E. Gilad, J. von Hardenberg, M. Shachak and Y. Zarmi, Vegetation patterns along a rainfall gradient, Chaos Solitons Fractals, 19 (2004), 367-376.
doi: 10.1016/S0960-0779(03)00049-3. |
[16] |
K. Ik Kim and Z. Lin, Coexistence of three species in a strongly coupled elliptic system, Nonl. Anal., 55 (2003), 313-333.
doi: 10.1016/S0362-546X(03)00242-6. |
[17] |
T. Kadota and K. Kuto, Positive steady states for a prey-predator model with some nonlinear diffusion terms, J. Math. Anal. Appl., 323 (2006), 1387-1401.
doi: 10.1016/j.jmaa.2005.11.065. |
[18] |
K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 315-348.
doi: 10.1016/j.jde.2003.08.003. |
[19] |
C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations, 72 (1988), 1-27.
doi: 10.1016/0022-0396(88)90147-7. |
[20] |
J. D. Murray, "Mathematical Biology. Third Edition. I. An Introduction," Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002; II. Spatial models and biomedical applications. Interdisciplinary Applied Mathematics, 18, Springer-Verlag, New York, 2003. |
[21] |
A. Okubo, "Diffusion and Ecological Problems: Mathematical Models, An Extended Version of the Japanese Edition, Ecology and Diffusion," Translated by G. N. Parker. Biomathematics, 10, Springer-Verlag, Berlin-New York, 1980. |
[22] |
P. Y. H. Pang and M. Wang, Strategy and stationary pattern in a three-species predator-prey model, J. Differential Equations, 200 (2004), 245-273; (2004), 1065-1089. |
[23] |
J. P. Shi, Z. F. Xie and K. Little, Cross-diffusion induced instability and stability in reaction-diffusion systems, Preprint. |
[24] |
F. Yi, J. Wei and J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differential Equations, 246 (2009), 1944-1977.
doi: 10.1016/j.jde.2008.10.024. |
[25] |
A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Royal Soc. London B, 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012. |
[26] |
V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi, Mem. R. Accad. Naz. dei Lincei. Ser. VI, 2 (1926). |
[27] |
M. Wang, Stationary patterns of strongly coupled prey-predator models, J. Math. Anal. Appl., 292 (2004), 484-505.
doi: 10.1016/j.jmaa.2003.12.027. |
[28] |
X. Wang, Qualitative behavior of solutions of chemotactic diffusion systems: Effects of motility and chemotaxis and dynamics, SIAM J. Math. Anal., 31 (2000), 535-560.
doi: 10.1137/S0036141098339897. |
[29] |
C. S. Zhao, Asymptotic behaviors of a class of $N$-Laplacian Neumann problems with large diffusion, Nonlinear Anal., 69 (2008), 2496-2524.
doi: 10.1016/j.na.2007.08.028. |
[30] |
X. Zeng, Non-constant positive steady states of a prey-predator system with cross-diffusions, J. Math. Anal. Appl., 332 (2007), 989-1009.
doi: 10.1016/j.jmaa.2006.10.075. |
[1] |
Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875 |
[2] |
Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597 |
[3] |
Willian Cintra, Carlos Alberto dos Santos, Jiazheng Zhou. Coexistence states of a Holling type II predator-prey system with self and cross-diffusion terms. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3913-3931. doi: 10.3934/dcdsb.2021211 |
[4] |
Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure and Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481 |
[5] |
Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653 |
[6] |
Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057 |
[7] |
Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203 |
[8] |
Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035 |
[9] |
Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536 |
[10] |
Hongwei Yin, Xiaoyong Xiao, Xiaoqing Wen. Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2121-2151. doi: 10.3934/dcdsb.2018228 |
[11] |
Xinhong Zhang, Qing Yang. Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3155-3175. doi: 10.3934/dcdsb.2021177 |
[12] |
Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589 |
[13] |
Mostafa Bendahmane. Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis. Networks and Heterogeneous Media, 2008, 3 (4) : 863-879. doi: 10.3934/nhm.2008.3.863 |
[14] |
Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 1163-1178. doi: 10.3934/dcdsb.2021085 |
[15] |
Sebastién Gaucel, Michel Langlais. Some remarks on a singular reaction-diffusion system arising in predator-prey modeling. Discrete and Continuous Dynamical Systems - B, 2007, 8 (1) : 61-72. doi: 10.3934/dcdsb.2007.8.61 |
[16] |
Kexin Wang. Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type Ⅱ response and infinite delays. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1699-1714. doi: 10.3934/dcdsb.2019247 |
[17] |
Shuping Li, Weinian Zhang. Bifurcations of a discrete prey-predator model with Holling type II functional response. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 159-176. doi: 10.3934/dcdsb.2010.14.159 |
[18] |
Gaetana Gambino, Valeria Giunta, Maria Carmela Lombardo, Gianfranco Rubino. Cross-diffusion effects on stationary pattern formation in the FitzHugh-Nagumo model. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022063 |
[19] |
Shanbing Li, Jianhua Wu. Effect of cross-diffusion in the diffusion prey-predator model with a protection zone. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1539-1558. doi: 10.3934/dcds.2017063 |
[20] |
Hideki Murakawa. A relation between cross-diffusion and reaction-diffusion. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 147-158. doi: 10.3934/dcdss.2012.5.147 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]