Citation: |
[1] |
R. Albert and H. Othmer, The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster, J. Theor. Biol., 223 (2003), 1-18.doi: 10.1016/S0022-5193(03)00035-3. |
[2] |
C. L. Barrett, W. Y. C. Chen and M. J. Zheng, Discrete dynamical systems on graphs and boolean functions, Math. Comput. Simul., 66 (2004), 487-497.doi: 10.1016/j.matcom.2004.03.003. |
[3] |
D. Bollman, O. Coló-Reyes and E. Orozco, Fixed points in discrete models for regulatory genetic networks, EURASIP Journal on Bioinformatics and System Biology, (2007), On-line ID97356. |
[4] |
G. Boole, "The Mathematical Analysis of Logic, Being an Essay Towards a Calculus of Deductive Reasoning," Macmillan, Barclay and Macmillan, Cambridge; George Bell, London, 1847. Reprints (1948, 1951), Basil Blackwell, Oxford. |
[5] |
G. Boole, "An Investigation of the Laws of Thought, on Which are Founded the Mathematical Theories of Logic and Probabilities," Macmillan, Barclay and Macmillan, Cambridge; Walton and Maberly, London, 1854. Reprint (1960), Dover, New York. |
[6] |
M. Brickenstein and A. Dreyer, PolyBoRi: A framework for Gröbner-basis computations with Boolean polynomials, J. Symbolic Comput., 44 (2009), 1326-1345doi: 10.1016/j.jsc.2008.02.017. |
[7] |
M. Brickenstein, A. Dreyer, G-M. Greuel, M. Wedler and O. Wienand, New developments in the theory of Gröbner bases and applications to formal verification, J. Pure Appl. Algebra, 213 (2009), 1612-1635. arXiv:0801.1177. |
[8] |
O. Colón-Reyes, R. Laubenbacher and B. Pareigis, Boolean monomial dynamical systems, Annals of Combinatorics, 8 (2004), 425-439. arXiv:math/0403166v1. |
[9] |
M. I. Davidich and S. Bornholdt, Boolean network model predicts cell cycle sequence of fission yeast, PLoS ONE, 3 (2008), e1672. |
[10] |
E. Dubrova, M. Teslenko and A. Martinelli, Kauffman networks: Analysis and applications, Computer-Aided Design, IEEE/ACM International Conference (2005), 479-484,doi: 10.1109/ICCAD.2005.1560115. |
[11] |
E. D. Fabricius, "Modern Digital Design and Switching Theory," CRC Press 1992. |
[12] |
J. F. Groote and M. Keinänen, A sub-quadratic algorithm for conjunctive and disjunctive BESs, Theoretical aspects of computing-ICTAC 2005, 532-545, Lecture Notes in Comput. Sci., 3722, Springer, Berlin 2005. |
[13] |
R. A. Hernádez-Toledo, Linear finite dynamical systems, Communications in Algebra, 33 (2005), 2977-2989.doi: 10.1081/AGB-200066211. |
[14] |
A. Ilichinsky, "Cellular Automata: A Discrete Universe," World Scientific Publishing Company, 2001. |
[15] |
A. Jarrah, R. Laubenbacher, B. Stigler and M. Stillman, Reverse-engineering of polynomial dynamical systems, Adv. in Appl. Math., 39 (2007), 477-489. arXiv:q-bio/0605032v1. |
[16] |
A. Jarrah, B. Raposa and R. Laubenbacher, Nested canalyzing, unate cascade, and polynomial functions, Physica D, 233 (2007), 167-174. arXiv:q-bio/0606013v3. |
[17] |
A. Jarrah, R. Laubenbacher and A. Veliz-Cuba, The dynamics of conjunctive and disjunctive Boolean networks, preprint available at: arXiv:0805.0275v1. |
[18] |
W. Just, The steady state system problem is NP-hard even for monotone quadratic Boolean dynamical systems, preprint available at: http://www.math.ohiou.edu/ just/publ.html. |
[19] |
S. Kauffman, C. Peterson, B. Samuelsson and C. Troein, Genetic networks with canalyzing Boolean rules are always stable, PNAS, 101 (2004), 17102-17107.doi: 10.1073/pnas.0407783101. |
[20] |
R. Laubenbacher and B. Stigler, A computational algebra approach to the reverse engineering of gene regulatory networks, J. Theor. Biol., 229 (2004), 523-537. arXiv:q-bio/0312026. |
[21] |
T. E. Malloy, J. Butner and G. C. Jensen, The emergence of dynamic form through phase relations in dynamic systems, Nonlinear Dynamics, Psychology, and Life Sciences, 12 (2008), 371-395. |
[22] |
R. Pal, I. Ivanov, A. Datta, M. L. Bittner and E. R. Dougherty, Generating Boolean networks with a prescribed attractor structure, Bioinformatics, 21 (2005), 4021-4025.doi: 10.1093/bioinformatics/bti664. |
[23] |
J. Reger and K. Schmidt, Modeling and analyzing finite state automata in the finite field $F_2$, Mathematics and Computers in Simulation, 66 (2004), 193-206.doi: 10.1016/j.matcom.2003.11.005. |
[24] |
N. A. W. Riel, Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments, Briefings in Bioinformatics, 7 (2006), 364-374.doi: 10.1093/bib/bbl040. |
[25] |
S. Rudeanu, "Boolean Functions and Equations," North-Holland, Amsterdam, 1974. |
[26] |
M. H. Stone, The theory of representation for Boolean algebras, Transactions of American Mathematical Society, 40 (1936), 37-111. |
[27] |
T. Tamura and T. Akutsu, Algorithms for singleton attractor detection in planar and nonplanar AND/OR Boolean networks, Math. Comput. Sci., 2 (2009), 401-420.doi: 10.1007/s11786-008-0063-5. |
[28] |
C. J. Tomlin and J. D. Aelrod, Biology by numbers: Mathematical modelling in developmental biology, Nature Reviews Genetics, 8 (2007), 331-340.doi: 10.1038/nrg2098. |
[29] |
S-Q. Zhang, M. Hayashida, T. Akutsu, W-K. Ching and M. K. Ng, Algorithms for finding small attractors in Boolean networks, EURASIP Journal on Bioinformatics and Systems Biology (2007).doi: 10.1155/2007/20180. |