February  2011, 4(1): 209-222. doi: 10.3934/dcdss.2011.4.209

The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity

1. 

Laboratoire de Mathématiques et Applications UMR CNRS 6086, Université de Poitiers, Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil

2. 

The Institute for Scientific Computing and Applied Mathematics, Indiana University, 831 E. 3rd St., Rawles Hall, Bloomington, IN 47405

Received  June 2009 Revised  September 2009 Published  October 2010

In the present article we consider the nonviscous Shallow Water Equations in space dimension one with Dirichlet boundary conditions for the velocity and we show the locally in time well-posedness of the model.
Citation: Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209
References:
[1]

M. J. P. Cullen, Analysis of the semi-geostrophic shallow water equations, Phys. D, 237 (2008), 1461-1465. doi: doi:10.1016/j.physd.2008.03.014.

[2]

C. D. Levermore and M. Sammartino, A shallow water model with eddy viscosity for basins with varying bottom topography, Nonlinearity, 14 (2001), 1493-1515. doi: doi:10.1088/0951-7715/14/6/305.

[3]

P.-L. Lions, B. Perthame and P. E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math., 49 (1996), 599-638. doi: doi:10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5.

[4]

P.-L. Lions, B. Perthame and P. E. Souganidis, Weak stability of isentropic gas dynamics for $\gamma=5/3$, in "Progress in Elliptic and Parabolic Partial Differential Equations" (Capri, 1994), vol. 350 of Pitman Res. Notes Math. Ser., Longman, Harlow, (1996), 184-192.

[5]

A. Majda, Vorticity and the mathematical theory of incompressible fluid flow, in "Frontiers of the Mathematical Sciences: 1985," (New York, 1985), Comm. Pure Appl. Math., 39 (1986), S187-S220.

[6]

A. J. Majda, "Compressible Fluid Flows and Systems of Conservation Laws in Several Space Variables," Springer-Verlag, New York, 1984.

[7]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge texts in applied mathematics, Cambridge University Press, New York, 2002.

[8]

P. Orenga, Un théorème d'existence de solutions d'un problème de shallow water, Arch. Rational Mech. Anal., 130 (1995), 183-204. doi: doi:10.1007/BF00375155.

[9]

D. Pritchard and L. Dickinson, The near-shore behaviour of shallow-water waves with localized initial conditions, J. Fluid Mech., 591 (2007), 413-436. doi: doi:10.1017/S002211200700835X.

[10]

J. M. Rakotoson, R. Temam and J. Tribbia, Remarks on the nonviscous shallow water equations, Indiana University Mathematics Journal, 57 (2008), 2969-2998. doi: doi:10.1512/iumj.2008.57.3699.

[11]

M. E. Taylor, Partial differential equations. III, vol. 117 of Applied Mathematical Sciences, Springer-Verlag, New York, 1997, Nonlinear equations, Corrected reprint of the 1996 original.

show all references

References:
[1]

M. J. P. Cullen, Analysis of the semi-geostrophic shallow water equations, Phys. D, 237 (2008), 1461-1465. doi: doi:10.1016/j.physd.2008.03.014.

[2]

C. D. Levermore and M. Sammartino, A shallow water model with eddy viscosity for basins with varying bottom topography, Nonlinearity, 14 (2001), 1493-1515. doi: doi:10.1088/0951-7715/14/6/305.

[3]

P.-L. Lions, B. Perthame and P. E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math., 49 (1996), 599-638. doi: doi:10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5.

[4]

P.-L. Lions, B. Perthame and P. E. Souganidis, Weak stability of isentropic gas dynamics for $\gamma=5/3$, in "Progress in Elliptic and Parabolic Partial Differential Equations" (Capri, 1994), vol. 350 of Pitman Res. Notes Math. Ser., Longman, Harlow, (1996), 184-192.

[5]

A. Majda, Vorticity and the mathematical theory of incompressible fluid flow, in "Frontiers of the Mathematical Sciences: 1985," (New York, 1985), Comm. Pure Appl. Math., 39 (1986), S187-S220.

[6]

A. J. Majda, "Compressible Fluid Flows and Systems of Conservation Laws in Several Space Variables," Springer-Verlag, New York, 1984.

[7]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow," Cambridge texts in applied mathematics, Cambridge University Press, New York, 2002.

[8]

P. Orenga, Un théorème d'existence de solutions d'un problème de shallow water, Arch. Rational Mech. Anal., 130 (1995), 183-204. doi: doi:10.1007/BF00375155.

[9]

D. Pritchard and L. Dickinson, The near-shore behaviour of shallow-water waves with localized initial conditions, J. Fluid Mech., 591 (2007), 413-436. doi: doi:10.1017/S002211200700835X.

[10]

J. M. Rakotoson, R. Temam and J. Tribbia, Remarks on the nonviscous shallow water equations, Indiana University Mathematics Journal, 57 (2008), 2969-2998. doi: doi:10.1512/iumj.2008.57.3699.

[11]

M. E. Taylor, Partial differential equations. III, vol. 117 of Applied Mathematical Sciences, Springer-Verlag, New York, 1997, Nonlinear equations, Corrected reprint of the 1996 original.

[1]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[2]

Bashar Khorbatly. Long, intermediate and short-term well-posedness of high precision shallow-water models with topography variations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022068

[3]

David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113

[4]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[5]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[6]

Andreas Hiltebrand, Siddhartha Mishra. Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks and Heterogeneous Media, 2016, 11 (1) : 145-162. doi: 10.3934/nhm.2016.11.145

[7]

François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739

[8]

Pavel Krejčí, Elisabetta Rocca. Well-posedness of an extended model for water-ice phase transitions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 439-460. doi: 10.3934/dcdss.2013.6.439

[9]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[10]

Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239

[11]

Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146

[12]

Julien Chambarel, Christian Kharif, Olivier Kimmoun. Focusing wave group in shallow water in the presence of wind. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 773-782. doi: 10.3934/dcdsb.2010.13.773

[13]

Anna Geyer, Ronald Quirchmayr. Shallow water models for stratified equatorial flows. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4533-4545. doi: 10.3934/dcds.2019186

[14]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[15]

Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015

[16]

Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593

[17]

Issam S. Strub, Julie Percelay, Olli-Pekka Tossavainen, Alexandre M. Bayen. Comparison of two data assimilation algorithms for shallow water flows. Networks and Heterogeneous Media, 2009, 4 (2) : 409-430. doi: 10.3934/nhm.2009.4.409

[18]

Olivier Delestre, Arthur R. Ghigo, José-Maria Fullana, Pierre-Yves Lagrée. A shallow water with variable pressure model for blood flow simulation. Networks and Heterogeneous Media, 2016, 11 (1) : 69-87. doi: 10.3934/nhm.2016.11.69

[19]

Denys Dutykh, Dimitrios Mitsotakis. On the relevance of the dam break problem in the context of nonlinear shallow water equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (4) : 799-818. doi: 10.3934/dcdsb.2010.13.799

[20]

Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks and Heterogeneous Media, 2016, 11 (1) : 1-27. doi: 10.3934/nhm.2016.11.1

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (94)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]