\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On certain convex compactifications for relaxation in evolution problems

Abstract Related Papers Cited by
  • A general-topological construction of limits of inverse systems is applied to convex compactifications and furthermore to special convex compactifications of Lebesgue-space-valued functions parameterized by time. Application to relaxation of quasistatic evolution in phase-change-type problems is outlined.
    Mathematics Subject Classification: Primary: 54D35; Secondary: 26A45, 49J45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Alexandroff, Untersuchungen über gestalt und lage abgeschlossener mengen beliebiger dimension, Math. Anal., 30 (1929), 101-187.

    [2]

    S. Aubri, M. Fago and M. Ortiz, A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials, Comp. Meth. in Appl. Mech. Engr., 192 (2003), 2823-2843.

    [3]

    V. Barbu and T. Precupanu, "Convexity and Optimization in Banach Spaces," D. Reidel Publ., Dordrecht, 1986.

    [4]

    S. Bartels, C. Carstensen, K. Hackl and U. Hoppe, Effective relaxation for microstructure simulations: Algorithms and applications, Comput. Methods Appl. Mech. Engrg., 193 (2004), 5143-5175.doi: 10.1016/j.cma.2003.12.065.

    [5]

    S. A. Belov and V. V. Chistyakov, A selection principle or mappings of bounded variation, J. Math. Anal. Appl., 249 (2000), 351-366.doi: 10.1006/jmaa.2000.6844.

    [6]

    F. Cagnetti and R. ToaderQuasistatic crack evolution for a cohesive zone model with different response to loading and unloading: A Young measure approach, SISSA, preprint, 56/2007/M.

    [7]

    C. Carstensen, K. Hackl and A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity, Proc. Royal Soc. London, Ser. A, 458 (2002), 299-317.

    [8]

    V. V. Chistyakov, Mappings of bounded variations, J. Dyn. Cont. Syst., 3 (1997), 261-289.doi: 10.1007/BF02465896.

    [9]

    V. V. Chistyakov and O. E. Galkin, Mappings of bounded $\Phi$-variation with arbitrary function $\Phi$, J. Dyn. Cont. Syst., 4 (1998), 217-247.doi: 10.1023/A:1022889902536.

    [10]

    G. Dal Maso, A. DeSimone, M. G. Mora and M. Morini, Time-dependent systems of generalized Young measures, Netw. Heterog. Media, 2 (2007), 1-36.

    [11]

    G. Dal Maso, A. DeSimone, M. G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening, Arch. Rational Mech. Anal., 189 (2007), 469-544.doi: 10.1007/s00205-008-0117-5.

    [12]

    G. Dal Maso, A. DeSimone, M. G. Mora and M. Morini, Globally stable quasistatic evolution in plasticity with softening, Netw. Heterog. Media, 3 (2008), 567-614.

    [13]

    R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys., 108 (1987), 667-689.doi: 10.1007/BF01214424.

    [14]

    S. Eilenberg and N. Steenrod, "Foundation of Algebraic Topology," Princeton, 1952.

    [15]

    R. Engelking, "General Topology," PWN, Warszawa, 1977.

    [16]

    A. Fiaschi, A Young measure approach to a quasistatic evolution for a class of material models with nonconvex elastic energies, ESAIM: Control, Optimisation Calc. Var., 15 (2009), 245-278.doi: 10.1051/cocv:2008030.

    [17]

    A. Fiaschi, A vanishing viscosity approach to a quasistatic evolution problem with nonconvex energy, Ann. Inst. H. Poincaré, Anal. Nonlin., 26 (2009), 1055-1080.

    [18]

    A. FiaschiRate-independent phase transitions in elastic materials: A Young-measure approach, (preprint SISSA, on CVGMT.sns.it) Network Heter. Media, submitted.

    [19]

    S. Govindjee, A. Mielke and G. J. Hall, Free-energy of mixing for $n$-variant martensitic phase transformations using quasi-convex analysis, J. Mech. Physics Solids, 50 (2002), 1897-1922.doi: 10.1016/S0022-5096(02)00009-1.

    [20]

    K. Hackl and D. M. Kochmann, Relaxed potentials and evolution equations for inelastic microstructures, in "IUTAM Symp. Theoretical, Comput. Model. Aspects of Inelastic Media" (B. D. Reddy, ed.), Springer, (2008), 27-39.doi: 10.1007/978-1-4020-9090-5_3.

    [21]

    B. Halphen and Q. S. Nguyen, Sur les matériaux standards généralisés. J. Mécanique, 14 (1975), 39-63.

    [22]

    E. Helly, Über lineare funktionaloperationen, Sitzungsberichte der Math.-Natur. Klasse der Kaiserlichen Akademie der Wissenschaften, 121 (1912), 265-297.

    [23]

    M. Kružík, A. Mielke and T. Roubíček, Modelling of microstructure and its evolution in shape-memory-alloy single-crystals, in particular in CuAlNi, Meccanica, 40 (2005), 389-418.doi: 10.1007/s11012-005-2106-1.

    [24]

    M. Kružík and A. Prohl, Recent developments in the modeling, analysis, and numerics of ferromagnetism, SIAM Rev., 48 (2006), 439-483.doi: 10.1137/S0036144504446187.

    [25]

    M. Kružík and J. Zimmer, Evolutionary problems in non-reflexive spaces, (preprint no. 5/07, BICS, Univ. Bath, 2007), ESAIM Conv. Optim. Calc. Var.doi: 10.1051/cocv:2008060.

    [26]

    M. Kružík and J. Zimmer, A model of shape-memory alloys accounting for plasiticity. (preprint no. 20/08, BICS, Uni. Bath, 2008), submitted.

    [27]

    M. Kružík and J. Zimmer, A note on time-dependent DiPerna-Majda measures, (preprint no. 19/08, BICS, Uni. Bath, 2008), submitted.

    [28]

    S. Lefschetz, On compact spaces, Math. Anal., 32 (1931), 521-538.doi: 10.2307/1968249.

    [29]

    A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. PDEs, 22 (2005), 73-99.

    [30]

    A. Mielke, Deriving new evolution equations for microstructures via relaxation of variational incremental problems, Comput. Methods Appl. Mech. Engrg., 193 (2004), 5095-5127.doi: 10.1016/j.cma.2004.07.003.

    [31]

    A. Mielke, Evolution of rate-independent systems, in "Handbook of Differential Equations: Evolutionary Diff. Eqs." (C. Dafermos and E. Feireisl, eds.), North-Holland, Elsevier, Amsterdam, (2005), 461-559.

    [32]

    A. Mielke, A mathematical framework for generalized standard materials in the rate-independent case, in "Multifield Problems in Solid and Fluid Mechanics" (R. Helmig, A. Mielke and B. I. Wohlmuth, eds.), L.N. Appl. Comp. Mech., 28, Springer, Berlin, (2006), 351-379.

    [33]

    A. Mielke and T. Roubíček, A rate-independent model for inelastic behavior of shape-memory alloys, Multiscale Model. Simul., 1 (2003), 571-597.doi: 10.1137/S1540345903422860.

    [34]

    A. Mielke and F. Theil, On rate-independent hysteresis models, Nonlin. Diff. Eq. Appl., 11 (2004), 151-189, (accepted July 2001).

    [35]

    A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Archive Rat. Mech. Anal., 162 (2002), 137-177.doi: 10.1007/s002050200194.

    [36]

    T. Roubíček, Convex compactifications and special extensions of optimization problems, Nonlinear Anal., Th. Meth. Appl., 16 (1991), 1117-1126.doi: 10.1016/0362-546X(91)90199-B.

    [37]

    T. Roubíček, "Relaxation in Optimization Theory and Variational Calculus," W. de Gruyter, Berlin, 1997.

    [38]

    T. Roubíček, Convex locally compact extensions of Lebesgue spaces and their applications, in: "Calculus of Variations and Optimal Control" (A. Ioffe, S. Reich and I. Shafrir, eds.), Chapman & Hall/CRC, Boca Raton, FL, (1999), 237-250.

    [39]

    T. Roubíček and K.-H. Hoffmann, About the concept of measure-valued solutions to distributed parameter systems, Math. Methods Appl. Sci., 18 (1995), 671-685.doi: 10.1002/mma.1670180902.

    [40]

    T. Roubíček and M. Kružík, Microstructure evolution model in micromagnetics, Z. angew. Math. Physik, 55 (2004), 159-182.

    [41]

    A. Tychonoff, Über die topologische Erweiterung von Räumen, Math. Annalen, 102 (1930), 544-561.doi: 10.1007/BF01782364.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(77) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return