[1]
|
P. Acquistapace, F. Bucci and I. Lasiecka, A trace regularity result for thermoelastic equations with application to optimal boundary control, J. Math. Anal. Appl., 310 (2005), 262-277.
|
[2]
|
P. Acquistapace, F. Bucci and I. Lasiecka, Optimal boundary control and Riccati theory for abstract dynamics motivated by hybrid systems of PDEs, Adv. Differential Equations, 10 (2005), 1389-1436.
|
[3]
|
G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction, I. Explicit semigroup generator and its spectral properties, Contemp. Math., 440 (2007), 15-54.
|
[4]
|
G. Avalos and R. Triggiani, Mathematical analysis of PDE systems which govern fluid-structure interactive phenomena, Bol. Soc. Paran. Mat., 25 (2007), 17-36.
|
[5]
|
G. Avalos and R. Triggiani, Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface, Discrete Contin. Dyn. Syst., 22 (2008), 817-833.
|
[6]
|
V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model, Contemp. Math., 440 (2007), 55-82.
|
[7]
|
V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Smoothness of weak solutions to a nonlinear fluid-structure interaction model, Indiana Univ. Math. J., 57 (2008), 1173-1207.
|
[8]
|
A. Bensoussan, G. Da Prato, M. Delfour and S. Mitter, "Representation and Control of Infinite Dimensional Systems," 2nd edition, Birkhäuser, Boston, 2007.
|
[9]
|
M. Boulakia, Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid, J. Math. Pures Appl., 84 (2005), 1515-1554.
|
[10]
|
F. Bucci, Control-theoretic properties of structural acoustic models with thermal effects, II. Trace regularity results, Appl. Math., 35 (2008), 305-321.
|
[11]
|
F. Bucci and I. Lasiecka, Singular estimates and Riccati theory for thermoelastic plate models with boundary thermal control, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 11 (2004), 545-568.
|
[12]
|
F. Bucci and I. Lasiecka, Optimal boundary control with critical penalization for a PDE model of fluid-solid interactions, Calc. Var. Partial Differential Equations, 37 (2010), 217-235.
|
[13]
|
D. Coutand and S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid, Arch. Ration. Mech. Anal., 176 (2005), 25-102.
|
[14]
|
Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluid-structure interaction problem, Discrete Contin. Dyn. Syst., 9 (2003), 633-650.
|
[15]
|
E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid, J. Evol. Equ., 3 (2003), 419-441.
|
[16]
|
A. V. Fursikov, M. D. Gunzburger and L. S. Hou, Optimal boundary control for the evolutionary Navier-Stokes system: The three-dimensional case, SIAM J. Control Optim., 43 (2005), 2191-2232.
|
[17]
|
I. Lasiecka, "Mathematical Control Theory of Coupled Systems," CBMS-NSF Regional Conf. Ser. in Appl. Math., 75, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2002.
|
[18]
|
I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theories, II. Abstract Hyperbolic-like Systems over a Finite Time Horizon," Encyclopedia of Mathematics and its Applications, 75, Cambridge University Press, Cambridge, 2000.
|
[19]
|
I. Lasiecka and R. Triggiani, Optimal control and differential Riccati equations under singular estimates for $e^{At}B$ in the absence of analyticity, in "Advances in Dynamics and Control," Nonlinear Syst. Aviat. Aerosp. Aeronaut. Astronaut. 2, Chapman & Hall/CRC, Boca Raton, FL, (2004), 270-307.
|
[20]
|
I. Lasiecka and A. Tuffaha, Riccati equations for the Bolza problem arising in boundary/point control problems governed by $C_0$ semigroups satisfying a singular estimate, J. Optim. Theory Appl., 136 (2008), 229-246.
|
[21]
|
I. Lasiecka and A. Tuffaha, Riccati theory and singular estimates for Bolza control problem arising in linearized fluid structure interactions, Systems Control Lett., 58 (2009), 499-509.
|
[22]
|
I. Lasiecka, J.-L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149-192.
|
[23]
|
J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires," (French) Dunod; Gauthier-Villars, Paris, 1969.
|
[24]
|
J.-L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications," Vol. I, Springer Verlag, Berlin, 1972.
|
[25]
|
M. Moubachir and J.-P. Zolésio, "Moving Shape Analysis and Control. Applications to Fluid Structure Interactions," Chapman & Hall/CRC, Boca Raton, FL, 2006.
|
[26]
|
A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, in "Handbook of Numerical Analysis," Vol. XII, North-Holland, Amsterdam, (2004), 3-127.
|