[1]

P. Acquistapace, F. Bucci and I. Lasiecka, A trace regularity result for thermoelastic equations with application to optimal boundary control, J. Math. Anal. Appl., 310 (2005), 262277.

[2]

P. Acquistapace, F. Bucci and I. Lasiecka, Optimal boundary control and Riccati theory for abstract dynamics motivated by hybrid systems of PDEs, Adv. Differential Equations, 10 (2005), 13891436.

[3]

G. Avalos and R. Triggiani, The coupled PDE system arising in fluid/structure interaction, I. Explicit semigroup generator and its spectral properties, Contemp. Math., 440 (2007), 1554.

[4]

G. Avalos and R. Triggiani, Mathematical analysis of PDE systems which govern fluidstructure interactive phenomena, Bol. Soc. Paran. Mat., 25 (2007), 1736.

[5]

G. Avalos and R. Triggiani, Uniform stabilization of a coupled PDE system arising in fluidstructure interaction with boundary dissipation at the interface, Discrete Contin. Dyn. Syst., 22 (2008), 817833.

[6]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Existence of the energylevel weak solutions for a nonlinear fluidstructure interaction model, Contemp. Math., 440 (2007), 5582.

[7]

V. Barbu, Z. Grujić, I. Lasiecka and A. Tuffaha, Smoothness of weak solutions to a nonlinear fluidstructure interaction model, Indiana Univ. Math. J., 57 (2008), 11731207.

[8]

A. Bensoussan, G. Da Prato, M. Delfour and S. Mitter, "Representation and Control of Infinite Dimensional Systems," 2nd edition, Birkhäuser, Boston, 2007.

[9]

M. Boulakia, Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid, J. Math. Pures Appl., 84 (2005), 15151554.

[10]

F. Bucci, Controltheoretic properties of structural acoustic models with thermal effects, II. Trace regularity results, Appl. Math., 35 (2008), 305321.

[11]

F. Bucci and I. Lasiecka, Singular estimates and Riccati theory for thermoelastic plate models with boundary thermal control, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 11 (2004), 545568.

[12]

F. Bucci and I. Lasiecka, Optimal boundary control with critical penalization for a PDE model of fluidsolid interactions, Calc. Var. Partial Differential Equations, 37 (2010), 217235.

[13]

D. Coutand and S. Shkoller, Motion of an elastic solid inside an incompressible viscous fluid, Arch. Ration. Mech. Anal., 176 (2005), 25102.

[14]

Q. Du, M. D. Gunzburger, L. S. Hou and J. Lee, Analysis of a linear fluidstructure interaction problem, Discrete Contin. Dyn. Syst., 9 (2003), 633650.

[15]

E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid, J. Evol. Equ., 3 (2003), 419441.

[16]

A. V. Fursikov, M. D. Gunzburger and L. S. Hou, Optimal boundary control for the evolutionary NavierStokes system: The threedimensional case, SIAM J. Control Optim., 43 (2005), 21912232.

[17]

I. Lasiecka, "Mathematical Control Theory of Coupled Systems," CBMSNSF Regional Conf. Ser. in Appl. Math., 75, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2002.

[18]

I. Lasiecka and R. Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theories, II. Abstract Hyperboliclike Systems over a Finite Time Horizon," Encyclopedia of Mathematics and its Applications, 75, Cambridge University Press, Cambridge, 2000.

[19]

I. Lasiecka and R. Triggiani, Optimal control and differential Riccati equations under singular estimates for $e^{At}B$ in the absence of analyticity, in "Advances in Dynamics and Control," Nonlinear Syst. Aviat. Aerosp. Aeronaut. Astronaut. 2, Chapman & Hall/CRC, Boca Raton, FL, (2004), 270307.

[20]

I. Lasiecka and A. Tuffaha, Riccati equations for the Bolza problem arising in boundary/point control problems governed by $C_0$ semigroups satisfying a singular estimate, J. Optim. Theory Appl., 136 (2008), 229246.

[21]

I. Lasiecka and A. Tuffaha, Riccati theory and singular estimates for Bolza control problem arising in linearized fluid structure interactions, Systems Control Lett., 58 (2009), 499509.

[22]

I. Lasiecka, J.L. Lions and R. Triggiani, Nonhomogeneous boundary value problems for second order hyperbolic operators, J. Math. Pures Appl., 65 (1986), 149192.

[23]

J.L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires," (French) Dunod; GauthierVillars, Paris, 1969.

[24]

J.L. Lions and E. Magenes, "NonHomogeneous Boundary Value Problems and Applications," Vol. I, Springer Verlag, Berlin, 1972.

[25]

M. Moubachir and J.P. Zolésio, "Moving Shape Analysis and Control. Applications to Fluid Structure Interactions," Chapman & Hall/CRC, Boca Raton, FL, 2006.

[26]

A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, in "Handbook of Numerical Analysis," Vol. XII, NorthHolland, Amsterdam, (2004), 3127.
