Advanced Search
Article Contents
Article Contents

A doubly nonlinear parabolic equation with a singular potential

Abstract Related Papers Cited by
  • Our aim in this paper is to study the long time behavior, in terms of finite dimensional attractors, of doubly nonlinear Allen-Cahn type equations with singular potentials.
    Mathematics Subject Classification: 35B41, 35B45, 35K65.


    \begin{equation} \\ \end{equation}
  • [1]

    A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," North-Holland, Amsterdam, 1992.


    L. Cherfils, S. Gatti and A. Miranville, Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential, J. Math. Anal. Appl., 343 (2008), 557-566.doi: doi:10.1016/j.jmaa.2008.01.077.


    L. Cherfils, S. Gatti and A. Miranville, Corrigendum to "Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential," J. Math. Anal. Appl., 348 (2008), 1029-1030.doi: doi:10.1016/j.jmaa.2008.07.058.


    A. Eden, C. Foias, B. Nicolaenko and R.Temam, "Exponential Attractors for Dissipative Evolution Equations," in "Research in Applied Mathematics," Vol. 37, John-Wiley, New York, 1994.


    A. Eden, B. Michaux and J.-M. Rakotoson, Doubly nonlinear parabolic-type equations as dynamical systems, J. Dyn. Diff. Eqns., 3 (1991), 87-131.doi: doi:10.1007/BF01049490.


    A. Eden and J.-M. Rakotoson, Exponential attractors for a doubly nonlinear equation, J. Math. Anal. Appl., 185 (1994), 321-339.doi: doi:10.1006/jmaa.1994.1251.


    M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92 (1996), 178-192.doi: doi:10.1016/0167-2789(95)00173-5.


    O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," in "Translations of Mathematical Monographs," Vol. 23, American Mathematical Society, Providence, R.I., 1967.


    J. Málek and D. Prážak, Large time behavior via the method of $l$-trajectories, J. Diff. Eqns., 181 (2002), 243-279.doi: doi:10.1006/jdeq.2001.4087.


    A. Miranville, Finite dimensional global attractor for a class of doubly nonlinear parabolic equations, Cent. Eur. J. Math., 4 (2006), 163-182.doi: doi:10.1007/s11533-005-0010-5.


    A. Miranville and S. Zelik, Finite-dimensionality of attractors for degenerate equations of elliptic-parabolic type, Nonlinearity, 20 (2007), 1773-1797.doi: doi:10.1088/0951-7715/20/8/001.


    A. Rougirel, Convergence to steady state and attractors for doubly nonlinear equations, J. Math. Anal. Appl., 339 (2008), 281-294.doi: doi:10.1016/j.jmaa.2007.06.028.


    R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Springer, New York, 1988.

  • 加载中

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint