-
Previous Article
Some remarks on the qualitative properties of solutions to a predator-prey model posed on non coincident spatial domains
- DCDS-S Home
- This Issue
-
Next Article
Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation
A doubly nonlinear parabolic equation with a singular potential
1. | Université de La Rochelle, Laboratoire MIA, Avenue Michel Crépeau, F-17042 La Rochelle Cedex, France |
2. | Dipartimento di Matematica, Università di Modena e Reggio Emilia, Via Campi 213/B, I-41100 Modena, Italy |
3. | Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 6086 - SP2MI, Boulevard Marie et Pierre Curie - Téléport 2, F-86962 Chasseneuil Futuroscope Cedex, France |
References:
[1] |
A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," North-Holland, Amsterdam, 1992. |
[2] |
L. Cherfils, S. Gatti and A. Miranville, Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential, J. Math. Anal. Appl., 343 (2008), 557-566.
doi: doi:10.1016/j.jmaa.2008.01.077. |
[3] |
L. Cherfils, S. Gatti and A. Miranville, Corrigendum to "Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential," J. Math. Anal. Appl., 348 (2008), 1029-1030.
doi: doi:10.1016/j.jmaa.2008.07.058. |
[4] |
A. Eden, C. Foias, B. Nicolaenko and R.Temam, "Exponential Attractors for Dissipative Evolution Equations," in "Research in Applied Mathematics," Vol. 37, John-Wiley, New York, 1994. |
[5] |
A. Eden, B. Michaux and J.-M. Rakotoson, Doubly nonlinear parabolic-type equations as dynamical systems, J. Dyn. Diff. Eqns., 3 (1991), 87-131.
doi: doi:10.1007/BF01049490. |
[6] |
A. Eden and J.-M. Rakotoson, Exponential attractors for a doubly nonlinear equation, J. Math. Anal. Appl., 185 (1994), 321-339.
doi: doi:10.1006/jmaa.1994.1251. |
[7] |
M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92 (1996), 178-192.
doi: doi:10.1016/0167-2789(95)00173-5. |
[8] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," in "Translations of Mathematical Monographs," Vol. 23, American Mathematical Society, Providence, R.I., 1967. |
[9] |
J. Málek and D. Prážak, Large time behavior via the method of $l$-trajectories, J. Diff. Eqns., 181 (2002), 243-279.
doi: doi:10.1006/jdeq.2001.4087. |
[10] |
A. Miranville, Finite dimensional global attractor for a class of doubly nonlinear parabolic equations, Cent. Eur. J. Math., 4 (2006), 163-182.
doi: doi:10.1007/s11533-005-0010-5. |
[11] |
A. Miranville and S. Zelik, Finite-dimensionality of attractors for degenerate equations of elliptic-parabolic type, Nonlinearity, 20 (2007), 1773-1797.
doi: doi:10.1088/0951-7715/20/8/001. |
[12] |
A. Rougirel, Convergence to steady state and attractors for doubly nonlinear equations, J. Math. Anal. Appl., 339 (2008), 281-294.
doi: doi:10.1016/j.jmaa.2007.06.028. |
[13] |
R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Springer, New York, 1988. |
show all references
References:
[1] |
A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," North-Holland, Amsterdam, 1992. |
[2] |
L. Cherfils, S. Gatti and A. Miranville, Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential, J. Math. Anal. Appl., 343 (2008), 557-566.
doi: doi:10.1016/j.jmaa.2008.01.077. |
[3] |
L. Cherfils, S. Gatti and A. Miranville, Corrigendum to "Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential," J. Math. Anal. Appl., 348 (2008), 1029-1030.
doi: doi:10.1016/j.jmaa.2008.07.058. |
[4] |
A. Eden, C. Foias, B. Nicolaenko and R.Temam, "Exponential Attractors for Dissipative Evolution Equations," in "Research in Applied Mathematics," Vol. 37, John-Wiley, New York, 1994. |
[5] |
A. Eden, B. Michaux and J.-M. Rakotoson, Doubly nonlinear parabolic-type equations as dynamical systems, J. Dyn. Diff. Eqns., 3 (1991), 87-131.
doi: doi:10.1007/BF01049490. |
[6] |
A. Eden and J.-M. Rakotoson, Exponential attractors for a doubly nonlinear equation, J. Math. Anal. Appl., 185 (1994), 321-339.
doi: doi:10.1006/jmaa.1994.1251. |
[7] |
M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92 (1996), 178-192.
doi: doi:10.1016/0167-2789(95)00173-5. |
[8] |
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," in "Translations of Mathematical Monographs," Vol. 23, American Mathematical Society, Providence, R.I., 1967. |
[9] |
J. Málek and D. Prážak, Large time behavior via the method of $l$-trajectories, J. Diff. Eqns., 181 (2002), 243-279.
doi: doi:10.1006/jdeq.2001.4087. |
[10] |
A. Miranville, Finite dimensional global attractor for a class of doubly nonlinear parabolic equations, Cent. Eur. J. Math., 4 (2006), 163-182.
doi: doi:10.1007/s11533-005-0010-5. |
[11] |
A. Miranville and S. Zelik, Finite-dimensionality of attractors for degenerate equations of elliptic-parabolic type, Nonlinearity, 20 (2007), 1773-1797.
doi: doi:10.1088/0951-7715/20/8/001. |
[12] |
A. Rougirel, Convergence to steady state and attractors for doubly nonlinear equations, J. Math. Anal. Appl., 339 (2008), 281-294.
doi: doi:10.1016/j.jmaa.2007.06.028. |
[13] |
R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Springer, New York, 1988. |
[1] |
Antonio Segatti. Global attractor for a class of doubly nonlinear abstract evolution equations. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 801-820. doi: 10.3934/dcds.2006.14.801 |
[2] |
Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717 |
[3] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5321-5335. doi: 10.3934/dcdsb.2020345 |
[4] |
Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060 |
[5] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3027-3042. doi: 10.3934/dcdss.2021031 |
[6] |
Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206 |
[7] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6207-6228. doi: 10.3934/dcdsb.2021015 |
[8] |
S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593 |
[9] |
Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure and Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165 |
[10] |
Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 223-240. doi: 10.3934/dcdsb.2019179 |
[11] |
Rolci Cipolatti, Otared Kavian. On a nonlinear Schrödinger equation modelling ultra-short laser pulses with a large noncompact global attractor. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 121-132. doi: 10.3934/dcds.2007.17.121 |
[12] |
Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155 |
[13] |
Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure and Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113 |
[14] |
Wenxian Shen. Global attractor and rotation number of a class of nonlinear noisy oscillators. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 597-611. doi: 10.3934/dcds.2007.18.597 |
[15] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[16] |
Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations and Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241 |
[17] |
Olivier Goubet, Ezzeddine Zahrouni. Global attractor for damped forced nonlinear logarithmic Schrödinger equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2933-2946. doi: 10.3934/dcdss.2020393 |
[18] |
Milena Stanislavova. On the global attractor for the damped Benjamin-Bona-Mahony equation. Conference Publications, 2005, 2005 (Special) : 824-832. doi: 10.3934/proc.2005.2005.824 |
[19] |
Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094 |
[20] |
Azer Khanmamedov, Sema Simsek. Existence of the global attractor for the plate equation with nonlocal nonlinearity in $ \mathbb{R} ^{n}$. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 151-172. doi: 10.3934/dcdsb.2016.21.151 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]