-
Previous Article
Selfadjointness of degenerate elliptic operators on higher order Sobolev spaces
- DCDS-S Home
- This Issue
-
Next Article
Direct and inverse problems in age--structured population diffusion
Isotropic-nematic phase transitions in liquid crystals
1. | Department of Mathematics, Piazza di Porta S. Donato 5, 40127-Bologna |
2. | Dipartimento di Matematica, Via Valotti 9, 25133 Brescia, Italy |
3. | DIBE, Via Opera Pia 11a, 16145 Genova, Italy |
References:
[1] |
P. G. de Gennes and J. Prost, "The Physics of Liquid Crystals," Clarendon, Oxford, 1998. |
[2] |
S. Singh, Phase transitions in liquid crystals, Phys. Rep., 324 (2000), 107-269. |
[3] |
J. L. Ericksen, Liquid crystals with variable degree of orientation, Arch. Rational Mech. Anal., 113 (1991), 97-120. |
[4] |
C.-P. Fan, Second order phase transitions in liquid crystals, Chin. J. Phys., 12 (1974), 24-31. |
[5] |
C.-P. Fan and M. J. Stephen, Isotropic-nematic phase transition in liquid crystal, Phys. Rev. Letters, 25 (1970), 500-503. |
[6] |
M. C. Calderer, Stability of shear flows of polimeric liquid crystals, J. Non-Newtonian Fluid Mech., 43 (1992), 351-368. |
[7] |
F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283. |
[8] |
P. Cermelli, E. Fried and M. E. Gurtin, Sharp-interface nematic-isotropic phase transitions without flow, Arch. Rational Mech. Anal., 174 (2004), 151-178. |
[9] |
D. R. Anderson, D. E. Carlson and E. Fried, A continuum-mechanical theory for nematic elastomers, J. Elasticity, 56 (1999), 33-58. |
[10] |
P. Cermelli and E. Fried, The evolution equation for a disclination in a nematic liquid crystal, Proc. R. Soc. Lond. - A, 458 (2002), 1-20, |
[11] |
P. Biscari, G. Napoli and S. Turzi, Bulk and surface biaxiality in nematic liquid crystals, Phys. Rev. - E, 74 (2006), 031708-7.
doi: doi:10.1103/PhysRevE.74.031708. |
[12] |
P. Biscari, M. C. Calderer and E. M. Terentjev, Landau-de Gennes theory of isotropic-nematic-smectic liquid crystal transitions, Phys. Rev. - E, 75 (2007), 051707-11.
doi: doi:10.1103/PhysRevE.75.051707. |
[13] |
M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to non-isothermal phase-field evolution in continuum physics, Physica - D, 214 (2006), 144-156. |
show all references
References:
[1] |
P. G. de Gennes and J. Prost, "The Physics of Liquid Crystals," Clarendon, Oxford, 1998. |
[2] |
S. Singh, Phase transitions in liquid crystals, Phys. Rep., 324 (2000), 107-269. |
[3] |
J. L. Ericksen, Liquid crystals with variable degree of orientation, Arch. Rational Mech. Anal., 113 (1991), 97-120. |
[4] |
C.-P. Fan, Second order phase transitions in liquid crystals, Chin. J. Phys., 12 (1974), 24-31. |
[5] |
C.-P. Fan and M. J. Stephen, Isotropic-nematic phase transition in liquid crystal, Phys. Rev. Letters, 25 (1970), 500-503. |
[6] |
M. C. Calderer, Stability of shear flows of polimeric liquid crystals, J. Non-Newtonian Fluid Mech., 43 (1992), 351-368. |
[7] |
F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Rational Mech. Anal., 28 (1968), 265-283. |
[8] |
P. Cermelli, E. Fried and M. E. Gurtin, Sharp-interface nematic-isotropic phase transitions without flow, Arch. Rational Mech. Anal., 174 (2004), 151-178. |
[9] |
D. R. Anderson, D. E. Carlson and E. Fried, A continuum-mechanical theory for nematic elastomers, J. Elasticity, 56 (1999), 33-58. |
[10] |
P. Cermelli and E. Fried, The evolution equation for a disclination in a nematic liquid crystal, Proc. R. Soc. Lond. - A, 458 (2002), 1-20, |
[11] |
P. Biscari, G. Napoli and S. Turzi, Bulk and surface biaxiality in nematic liquid crystals, Phys. Rev. - E, 74 (2006), 031708-7.
doi: doi:10.1103/PhysRevE.74.031708. |
[12] |
P. Biscari, M. C. Calderer and E. M. Terentjev, Landau-de Gennes theory of isotropic-nematic-smectic liquid crystal transitions, Phys. Rev. - E, 75 (2007), 051707-11.
doi: doi:10.1103/PhysRevE.75.051707. |
[13] |
M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to non-isothermal phase-field evolution in continuum physics, Physica - D, 214 (2006), 144-156. |
[1] |
Pavel Drábek, Stephen Robinson. Continua of local minimizers in a quasilinear model of phase transitions. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 163-172. doi: 10.3934/dcds.2013.33.163 |
[2] |
Sylvie Benzoni-Gavage, Laurent Chupin, Didier Jamet, Julien Vovelle. On a phase field model for solid-liquid phase transitions. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 1997-2025. doi: 10.3934/dcds.2012.32.1997 |
[3] |
Valeria Berti, Mauro Fabrizio, Diego Grandi. A phase field model for liquid-vapour phase transitions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 317-330. doi: 10.3934/dcdss.2013.6.317 |
[4] |
Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591 |
[5] |
Fanghua Lin, Chun Liu. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete and Continuous Dynamical Systems, 1996, 2 (1) : 1-22. doi: 10.3934/dcds.1996.2.1 |
[6] |
Alice Fiaschi. Rate-independent phase transitions in elastic materials: A Young-measure approach. Networks and Heterogeneous Media, 2010, 5 (2) : 257-298. doi: 10.3934/nhm.2010.5.257 |
[7] |
Jiayan Yang, Dongpei Zhang. Superfluidity phase transitions for liquid $ ^{4} $He system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5107-5120. doi: 10.3934/dcdsb.2019045 |
[8] |
Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623 |
[9] |
Marita Thomas, Sven Tornquist. Discrete approximation of dynamic phase-field fracture in visco-elastic materials. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 3865-3924. doi: 10.3934/dcdss.2021067 |
[10] |
Claude Vallée, Camelia Lerintiu, Danielle Fortuné, Kossi Atchonouglo, Jamal Chaoufi. Modelling of implicit standard materials. Application to linear coaxial non-associated constitutive laws. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1641-1649. doi: 10.3934/dcdss.2013.6.1641 |
[11] |
Honghu Liu. Phase transitions of a phase field model. Discrete and Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883 |
[12] |
Yuming Chu, Yihang Hao, Xiangao Liu. Global weak solutions to a general liquid crystals system. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2681-2710. doi: 10.3934/dcds.2013.33.2681 |
[13] |
Carlos J. García-Cervera, Sookyung Joo. Reorientation of smectic a liquid crystals by magnetic fields. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1983-2000. doi: 10.3934/dcdsb.2015.20.1983 |
[14] |
Jinhae Park, Feng Chen, Jie Shen. Modeling and simulation of switchings in ferroelectric liquid crystals. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1419-1440. doi: 10.3934/dcds.2010.26.1419 |
[15] |
Shaoqiang Tang, Huijiang Zhao. Stability of Suliciu model for phase transitions. Communications on Pure and Applied Analysis, 2004, 3 (4) : 545-556. doi: 10.3934/cpaa.2004.3.545 |
[16] |
Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139-148. doi: 10.3934/mbe.2014.11.139 |
[17] |
Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106 |
[18] |
Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211 |
[19] |
Geng Chen, Ping Zhang, Yuxi Zheng. Energy conservative solutions to a nonlinear wave system of nematic liquid crystals. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1445-1468. doi: 10.3934/cpaa.2013.12.1445 |
[20] |
Xian-Gao Liu, Jie Qing. Globally weak solutions to the flow of compressible liquid crystals system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 757-788. doi: 10.3934/dcds.2013.33.757 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]