-
Previous Article
Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces
- DCDS-S Home
- This Issue
-
Next Article
Isotropic-nematic phase transitions in liquid crystals
Selfadjointness of degenerate elliptic operators on higher order Sobolev spaces
1. | Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna, Italy |
2. | Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, United States, United States |
3. | Dipartimento di Matematica, Università degli Studi di Bari, Via Orabona, 4, 70125 Bari |
References:
[1] |
A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Fourth order ordinary differential operators with general Wentzell boundary conditions, Rocky Mountain J. Math., 38 (2008), 445-460.
doi: doi:10.1216/RMJ-2008-38-2-445. |
[2] |
A. Favini, J. A. Goldstein and S. Romanelli, An analytic semigroup associated to a degenerate evolution equation, in "Stochastic Processes and Functional Analysis" (Riverside, CA, 1994), Lecture Notes in Pure and Appl. Math. 186, Dekker, New York, (1997), 85-100. |
[3] |
W. Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math., 55 (1952), 468-519.
doi: doi:10.2307/1969644. |
[4] |
G. Metafune, Analyticity for some degenerate evolution equations on the unit interval, Studia Math., 127 (1998), 251-276. |
[5] |
J. A. Goldstein, "Semigroups of Linear Operators and Applications," The Clarendon Press, Oxford University Press, New York, 1985. |
[6] |
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. |
[7] |
H. Tanabe, "Equations of Evolution," 6. Pitman (Advanced Publishing Program), Boston Mass. - London, 1976. |
[8] |
J. Tidblom, $L^p$ Hardy inequalities in general domains, Research Reports in Mathematics Stockholm University no. 4, http://www2.math.su.se/reports/2003/4/2003-4.pdf, 2003. |
[9] |
H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators," Mathematical Library, 18, North-Holland Publishing Co., Amsterdam - New York, 1978. |
show all references
References:
[1] |
A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Fourth order ordinary differential operators with general Wentzell boundary conditions, Rocky Mountain J. Math., 38 (2008), 445-460.
doi: doi:10.1216/RMJ-2008-38-2-445. |
[2] |
A. Favini, J. A. Goldstein and S. Romanelli, An analytic semigroup associated to a degenerate evolution equation, in "Stochastic Processes and Functional Analysis" (Riverside, CA, 1994), Lecture Notes in Pure and Appl. Math. 186, Dekker, New York, (1997), 85-100. |
[3] |
W. Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math., 55 (1952), 468-519.
doi: doi:10.2307/1969644. |
[4] |
G. Metafune, Analyticity for some degenerate evolution equations on the unit interval, Studia Math., 127 (1998), 251-276. |
[5] |
J. A. Goldstein, "Semigroups of Linear Operators and Applications," The Clarendon Press, Oxford University Press, New York, 1985. |
[6] |
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. |
[7] |
H. Tanabe, "Equations of Evolution," 6. Pitman (Advanced Publishing Program), Boston Mass. - London, 1976. |
[8] |
J. Tidblom, $L^p$ Hardy inequalities in general domains, Research Reports in Mathematics Stockholm University no. 4, http://www2.math.su.se/reports/2003/4/2003-4.pdf, 2003. |
[9] |
H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators," Mathematical Library, 18, North-Holland Publishing Co., Amsterdam - New York, 1978. |
[1] |
Angela A. Albanese, Elisabetta M. Mangino. Analytic semigroups and some degenerate evolution equations defined on domains with corners. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 595-615. doi: 10.3934/dcds.2015.35.595 |
[2] |
Jeremy LeCrone, Gieri Simonett. Continuous maximal regularity and analytic semigroups. Conference Publications, 2011, 2011 (Special) : 963-970. doi: 10.3934/proc.2011.2011.963 |
[3] |
Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069 |
[4] |
V. Pata, Sergey Zelik. A result on the existence of global attractors for semigroups of closed operators. Communications on Pure and Applied Analysis, 2007, 6 (2) : 481-486. doi: 10.3934/cpaa.2007.6.481 |
[5] |
Antonio Algaba, Cristóbal García, Jaume Giné. Analytic integrability for some degenerate planar systems. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2797-2809. doi: 10.3934/cpaa.2013.12.2797 |
[6] |
Francesco Altomare, Mirella Cappelletti Montano, Vita Leonessa. On the positive semigroups generated by Fleming-Viot type differential operators. Communications on Pure and Applied Analysis, 2019, 18 (1) : 323-340. doi: 10.3934/cpaa.2019017 |
[7] |
Bertrand Lods, Mustapha Mokhtar-Kharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1469-1492. doi: 10.3934/cpaa.2009.8.1469 |
[8] |
Jorge J. Betancor, Alejandro J. Castro, Marta De León-Contreras. Variation operators for semigroups associated with Fourier-Bessel expansions. Communications on Pure and Applied Analysis, 2022, 21 (1) : 239-273. doi: 10.3934/cpaa.2021176 |
[9] |
Gary Froyland, Cecilia González-Tokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249-278. doi: 10.3934/jcd.2014.1.249 |
[10] |
Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417 |
[11] |
Piermarco Cannarsa, Genni Fragnelli, Dario Rocchetti. Null controllability of degenerate parabolic operators with drift. Networks and Heterogeneous Media, 2007, 2 (4) : 695-715. doi: 10.3934/nhm.2007.2.695 |
[12] |
Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363 |
[13] |
Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure and Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240 |
[14] |
Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004 |
[15] |
Alessia E. Kogoj. A Zaremba-type criterion for hypoelliptic degenerate Ornstein–Uhlenbeck operators. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3491-3494. doi: 10.3934/dcdss.2020112 |
[16] |
Giuseppe Da Prato, Alessandra Lunardi. Maximal dissipativity of a class of elliptic degenerate operators in weighted $L^2$ spaces. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 751-760. doi: 10.3934/dcdsb.2006.6.751 |
[17] |
Simona Fornaro, Giorgio Metafune, Diego Pallara, Roland Schnaubelt. Multi-dimensional degenerate operators in $L^p$-spaces. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2115-2145. doi: 10.3934/cpaa.2022052 |
[18] |
Motohiro Sobajima. On the threshold for Kato's selfadjointness problem and its $L^p$-generalization. Evolution Equations and Control Theory, 2014, 3 (4) : 699-711. doi: 10.3934/eect.2014.3.699 |
[19] |
Pierre Patie, Aditya Vaidyanathan. A spectral theoretical approach for hypocoercivity applied to some degenerate hypoelliptic, and non-local operators. Kinetic and Related Models, 2020, 13 (3) : 479-506. doi: 10.3934/krm.2020016 |
[20] |
Agnid Banerjee, Ramesh Manna. Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5105-5139. doi: 10.3934/dcds.2021070 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]