\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stability of solutions for nonlinear wave equations with a positive--negative damping

Abstract Related Papers Cited by
  • We prove a stability result for damped nonlinear wave equations, when the damping changes sign and the nonlinear term satisfies a few natural assumptions.
    Mathematics Subject Classification: Primary:35L70; Secondary: 93D20, 25B35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Benaddi and B. Rao, Energy decay rate of wave equations with indefinite damping, J. Differential Equations, 161 (2000), 337-357.

    [2]

    C. W. de Silva, "Vibration and Shock Handbook," Mechanical Engineering, CRC Press, 2005.doi: doi:10.1201/9781420039894.

    [3]

    G. Fragnelli and D. Mugnai, Stability of solutions for some classes of nonlinear damped wave equations, SIAM J. Control Optim., 47 (2008), 2520-2539.

    [4]

    P. Freitas and E. Zuazua, Stability results for the wave equation with indefinite damping, J. Differential Equations, 132 (1996), 338-352.

    [5]

    A. Haraux, P. Martinez and J. Vancostenoble, Asymptotic stability for intermittently controlled second order evolution equations, SIAM J. Control and Opt., 43 (2005), 2089-2108.

    [6]

    L. Hatvani and T. Krisztin, Necessary and sufficient conditions for intermittent stabilization of linear oscillators by large damping, Differential Integral Equations, 10 (1997), 265-272.

    [7]

    S. Konabe and T. Nikuni, Coarse-grained finite-temperature theory for the bose condensate in optical lattices, J. Low Temp. Phys., 150 (2008), 12-46.doi: doi:10.1007/s10909-007-9517-4.

    [8]

    A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, SIAM Review, 32 (1990), 537-578.

    [9]

    H. A. Levine, S. R. Park and J. Serrin, Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation, J. Math. Anal. Appl., 228 (1998), 181-205.

    [10]

    K. Liu, B. Rao and X. Zhang, Stabilization of the wave equations with potential and indefinite damping, J. Math. Anal. Appl., 269 (2002), 747-769.

    [11]

    A. Marino and D. Mugnai, Asymptotically critical points and their multiplicity, Topol. Methods Nonlinear Anal., 19 (2002), 29-38.

    [12]

    A. Marino and D. Mugnai, Asymptotical multiplicity and some reversed variational inequalities, Topol. Methods Nonlinear Anal., 20 (2002), 43-62.

    [13]

    P. Martinez and J. Vancostenoble, Stabilization of the wave equation by on-off and positive-negative feedbacks, ESAIM Control Optim. Calc. Var., 7 (2002), 335-377.

    [14]

    D. Mugnai, On a "reversed" variational inequality, Topol. Methods Nonlinear Anal., 17 (2001), 321-358.

    [15]

    P. Pucci and J. Serrin, Asymptotic stability for intermittently controlled nonlinear oscillators, SIAM J. Math. Anal., 25 (1994), 815-835.

    [16]

    P. Pucci and J. Serrin, Precise damping conditions for global asymptotic stability for nonlinear second order systems. II, J. Differential Equations, 113 (1994), 505-534.

    [17]

    G. Somieski, Shimmy analysis of a simple aircraft nose landing gear model using different mathematical methods, Aerosp. Sci. Technol., 1 (1997), 545-555.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(129) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return