Citation: |
[1] |
A. Benaddi and B. Rao, Energy decay rate of wave equations with indefinite damping, J. Differential Equations, 161 (2000), 337-357. |
[2] |
C. W. de Silva, "Vibration and Shock Handbook," Mechanical Engineering, CRC Press, 2005.doi: doi:10.1201/9781420039894. |
[3] |
G. Fragnelli and D. Mugnai, Stability of solutions for some classes of nonlinear damped wave equations, SIAM J. Control Optim., 47 (2008), 2520-2539. |
[4] |
P. Freitas and E. Zuazua, Stability results for the wave equation with indefinite damping, J. Differential Equations, 132 (1996), 338-352. |
[5] |
A. Haraux, P. Martinez and J. Vancostenoble, Asymptotic stability for intermittently controlled second order evolution equations, SIAM J. Control and Opt., 43 (2005), 2089-2108. |
[6] |
L. Hatvani and T. Krisztin, Necessary and sufficient conditions for intermittent stabilization of linear oscillators by large damping, Differential Integral Equations, 10 (1997), 265-272. |
[7] |
S. Konabe and T. Nikuni, Coarse-grained finite-temperature theory for the bose condensate in optical lattices, J. Low Temp. Phys., 150 (2008), 12-46.doi: doi:10.1007/s10909-007-9517-4. |
[8] |
A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, SIAM Review, 32 (1990), 537-578. |
[9] |
H. A. Levine, S. R. Park and J. Serrin, Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation, J. Math. Anal. Appl., 228 (1998), 181-205. |
[10] |
K. Liu, B. Rao and X. Zhang, Stabilization of the wave equations with potential and indefinite damping, J. Math. Anal. Appl., 269 (2002), 747-769. |
[11] |
A. Marino and D. Mugnai, Asymptotically critical points and their multiplicity, Topol. Methods Nonlinear Anal., 19 (2002), 29-38. |
[12] |
A. Marino and D. Mugnai, Asymptotical multiplicity and some reversed variational inequalities, Topol. Methods Nonlinear Anal., 20 (2002), 43-62. |
[13] |
P. Martinez and J. Vancostenoble, Stabilization of the wave equation by on-off and positive-negative feedbacks, ESAIM Control Optim. Calc. Var., 7 (2002), 335-377. |
[14] |
D. Mugnai, On a "reversed" variational inequality, Topol. Methods Nonlinear Anal., 17 (2001), 321-358. |
[15] |
P. Pucci and J. Serrin, Asymptotic stability for intermittently controlled nonlinear oscillators, SIAM J. Math. Anal., 25 (1994), 815-835. |
[16] |
P. Pucci and J. Serrin, Precise damping conditions for global asymptotic stability for nonlinear second order systems. II, J. Differential Equations, 113 (1994), 505-534. |
[17] |
G. Somieski, Shimmy analysis of a simple aircraft nose landing gear model using different mathematical methods, Aerosp. Sci. Technol., 1 (1997), 545-555. |