\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A time reversal based algorithm for solving initial data inverse problems

Abstract Related Papers Cited by
  • We propose an iterative algorithm to solve initial data inverse problems for a class of linear evolution equations, including the wave, the plate, the Schrödinger and the Maxwell equations in a bounded domain $\Omega$. We assume that the only available information is a distributed observation (i.e. partial observation of the solution on a sub-domain $\omega$ during a finite time interval $(0,\tau)$). Under some quite natural assumptions (essentially : the exact observability of the system for some time $\tau_{obs}>0$, $\tau\ge \tau_{obs}$ and the existence of a time-reversal operator for the problem), an iterative algorithm based on a Neumann series expansion is proposed. Numerical examples are presented to show the efficiency of the method.
    Mathematics Subject Classification: 35L50, 35Q93, 35R30, 93B07.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Alves, A. L. Silvestre, T. Takahashi and M. Tucsnak, Solving inverse source problems using observability. Applications to the Euler-Bernoulli plate equation, SIAM J. Control Optim, 48 (2009), 1632-1659.

    [2]

    D. Auroux and J. Blum, A nudging-based data assimilation method: The Back and Forth Nudging (BFN) algorithm, Nonlin. Proc. Geophys., 15 (2008), 305-319.

    [3]

    C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control. and Optim., 30 (1992), 1024-1065.

    [4]

    C. Clason and M. Klibanov, The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium, SIAM J. Sci. Comput., 30 (2009), 1-23.

    [5]

    R. F. Curtain and G. Weiss, Exponential stabilization of well-posed systems by colocated feedback, SIAM J. Control Optim., 45 (2006), 273-297.

    [6]

    B. Gebauer and O. Scherzer, Impedance-acoustic tomography, SIAM J. Appl. Math., 69 (2008), 565-576.

    [7]

    L. F. Ho, Observabilité frontière de l'équation des ondes, C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), 443-446.

    [8]

    Y. Hristova, P. Kuchment and L. Nguyen, Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media, Inverse Problems, 24 (2008), 055006.doi: doi:10.1088/0266-5611/24/5/055006.

    [9]

    B. L. G. Jonsson, M. Gustafsson, V. H. Weston and M. V. de Hoop, Retrofocusing of acoustic wave fields by iterated time reversal, SIAM J. Appl. Math., 64 (2004), 1954-1986.

    [10]

    F.-X. Le Dimet, V. Shutyaev and I. Gejadze, On optimal solution error in variational data assimilation: Theoretical aspects, Russian J. Numer. Anal. Math. Modelling, 21 (2006), 139-152.

    [11]

    V. Komornik, On the exact internal controllability of a Petrowsky system, J. Math. Pures Appl., 71 (1992), 331-342.

    [12]

    M. Krstic, L. Magnis and R. Vazquez, Nonlinear control of the viscous burgers equation: Trajectory generation, tracking, and observer design, Journal of Dynamic Systems, Measurement, and Control, 131 (2009), 021012.doi: doi:10.1115/1.3023128.

    [13]

    P. Kuchment and L. Kunyansky, On the exact internal controllability of a Petrowsky system, European J. Appl. Math., 19 (2008), 191-224.

    [14]

    K. Liu, Locally distributed control and damping for the conservative systems, SIAM J. Control Optim., 35 (1997), 1574-1590.

    [15]

    K. D. Phung and X. Zhang, Time reversal focusing of the initial state for kirchhoff plate, SIAM J. Appl. Math., 68 (2008), 1535-1556.

    [16]

    K. Ramdani, M. Tucsnak and G. Weiss, Recovering the initial state of an infinite-dimensional system using observers, Automatica, 46 (2010), 1616-1625.

    [17]

    J. J. Teng, G. Zhang and S. X. Huang, Some theoretical problems on variational data assimilation, Appl. Math. Mech., 28 (2007), 581-591.

    [18]

    M. Tucsnak and G. Weiss, "Observation and Control for Operator Semigroups," Birkäuser, Basel, 2009.

    [19]

    X. Zou, I.-M. Navon and F.-X. Le Dimet, An optimal nudging data assimilation scheme using parameter estimation, Quart. J. Roy. Met. Soc., 118 (1992), 1193-1186.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(109) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return