June  2011, 4(3): 653-670. doi: 10.3934/dcdss.2011.4.653

Convergence of solutions of a non-local phase-field system

1. 

Aalto University School of Science and Technology, PB 1000, 02015 TKK, Finland

2. 

Mathematical Institute AV ČR, Žitná 25, 115 67 Praha 1

Received  January 2009 Revised  August 2009 Published  November 2010

We show that solutions of a two-phase model involving a non-local interactive term separate from the pure phases from a certain time on, even if this is not the case initially. This result allows us to apply a generalized Lojasiewicz-Simon theorem and to establish the convergence of solutions to a single stationary state as time goes to infinity.
Citation: Stig-Olof Londen, Hana Petzeltová. Convergence of solutions of a non-local phase-field system. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 653-670. doi: 10.3934/dcdss.2011.4.653
References:
[1]

N. D. Alikakos, $L^p$-bounds of solutions of reaction diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.  Google Scholar

[2]

C. K. Chen and P. C. Fife, Nonlocal models of phase transitions in solids, Adv. Math. Sci. Appl., 10 (2000), 821-849.  Google Scholar

[3]

L. Cherfils, S. Gatti and A. Miranville, Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential, J. Math. Anal. Appl., 343 (2008), 557-566.  Google Scholar

[4]

C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423.  Google Scholar

[5]

E. Feireisl, F. Issard-Roch and H. Petzeltová, A non-smooth version of the Łojasiewicz-Simon theorem with applications to non-local phase-field systems, J. Differential Equations, 199 (2004), 1-21.  Google Scholar

[6]

E. Feireisl and H. Petzeltová, Non-standard applications of the Łojasiewicz-Simon theory, stabilization to equilibria of solutions to phase-field models, Banach Center Publications, 81 (2008), 175-184. Google Scholar

[7]

E. Feireisl and F. Simondon, Convergence for semilinear degenerate parabolic equations in several space dimensions, J. Dynamics Differential Equations, 12 (2000), 647-673.  Google Scholar

[8]

H. Gajewski and J. A. Griepentrog, A descent method for the free energy of multicomponent systems, Disc. Cont. Dyn. Syst, 15 (2006), 505-528.  Google Scholar

[9]

H. Gajewski and K. Zacharias, On a nonlocal phase separation model, J. Math. Anal. Appl., 286 (2003), 11-31.  Google Scholar

[10]

G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions I. Macroscopic limits, J. Statist. Phys., 87 (1997), 37-61.  Google Scholar

[11]

M. Grasselli, H. Petzeltová and G. Schimperna, Asymptotic behavior of a nonisothermal viscous Cahn-Hilliard equation with inertial term, J. Differential Equations, 239 (2007), 38-60.  Google Scholar

[12]

M. Grasselli, H. Petzeltová and G. Schimperna, Long time behavior of the Caginalp system with singular potential, Z. Anal. Anwend., 25 (2006), 51-72.  Google Scholar

[13]

M. Grasselli, H. Petzeltová and G. Schimperna, A nonlocal phase-field system with inertial term, Quart. Appl. Math., 65 (2007), 451-469.  Google Scholar

[14]

E. Rocca and R. Rossi, Analysis of a nonlinear degenerating PDE system for phase transitions in thermoviscoelastic materials, J. Differential Equations, 345 (2008), 3327-3375.  Google Scholar

[15]

W. P. Ziemer, "Weakly Differentiable Functions," Springer-Verlag, New York, 1989.  Google Scholar

show all references

References:
[1]

N. D. Alikakos, $L^p$-bounds of solutions of reaction diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.  Google Scholar

[2]

C. K. Chen and P. C. Fife, Nonlocal models of phase transitions in solids, Adv. Math. Sci. Appl., 10 (2000), 821-849.  Google Scholar

[3]

L. Cherfils, S. Gatti and A. Miranville, Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential, J. Math. Anal. Appl., 343 (2008), 557-566.  Google Scholar

[4]

C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423.  Google Scholar

[5]

E. Feireisl, F. Issard-Roch and H. Petzeltová, A non-smooth version of the Łojasiewicz-Simon theorem with applications to non-local phase-field systems, J. Differential Equations, 199 (2004), 1-21.  Google Scholar

[6]

E. Feireisl and H. Petzeltová, Non-standard applications of the Łojasiewicz-Simon theory, stabilization to equilibria of solutions to phase-field models, Banach Center Publications, 81 (2008), 175-184. Google Scholar

[7]

E. Feireisl and F. Simondon, Convergence for semilinear degenerate parabolic equations in several space dimensions, J. Dynamics Differential Equations, 12 (2000), 647-673.  Google Scholar

[8]

H. Gajewski and J. A. Griepentrog, A descent method for the free energy of multicomponent systems, Disc. Cont. Dyn. Syst, 15 (2006), 505-528.  Google Scholar

[9]

H. Gajewski and K. Zacharias, On a nonlocal phase separation model, J. Math. Anal. Appl., 286 (2003), 11-31.  Google Scholar

[10]

G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions I. Macroscopic limits, J. Statist. Phys., 87 (1997), 37-61.  Google Scholar

[11]

M. Grasselli, H. Petzeltová and G. Schimperna, Asymptotic behavior of a nonisothermal viscous Cahn-Hilliard equation with inertial term, J. Differential Equations, 239 (2007), 38-60.  Google Scholar

[12]

M. Grasselli, H. Petzeltová and G. Schimperna, Long time behavior of the Caginalp system with singular potential, Z. Anal. Anwend., 25 (2006), 51-72.  Google Scholar

[13]

M. Grasselli, H. Petzeltová and G. Schimperna, A nonlocal phase-field system with inertial term, Quart. Appl. Math., 65 (2007), 451-469.  Google Scholar

[14]

E. Rocca and R. Rossi, Analysis of a nonlinear degenerating PDE system for phase transitions in thermoviscoelastic materials, J. Differential Equations, 345 (2008), 3327-3375.  Google Scholar

[15]

W. P. Ziemer, "Weakly Differentiable Functions," Springer-Verlag, New York, 1989.  Google Scholar

[1]

Sergiu Aizicovici, Hana Petzeltová. Convergence to equilibria of solutions to a conserved Phase-Field system with memory. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 1-16. doi: 10.3934/dcdss.2009.2.1

[2]

Maurizio Grasselli, Giulio Schimperna. Nonlocal phase-field systems with general potentials. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 5089-5106. doi: 10.3934/dcds.2013.33.5089

[3]

Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems & Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036

[4]

Pierluigi Colli, Danielle Hilhorst, Françoise Issard-Roch, Giulio Schimperna. Long time convergence for a class of variational phase-field models. Discrete & Continuous Dynamical Systems, 2009, 25 (1) : 63-81. doi: 10.3934/dcds.2009.25.63

[5]

M. Grasselli, Hana Petzeltová, Giulio Schimperna. Convergence to stationary solutions for a parabolic-hyperbolic phase-field system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 827-838. doi: 10.3934/cpaa.2006.5.827

[6]

Pavel Krejčí, Elisabetta Rocca, Jürgen Sprekels. Phase separation in a gravity field. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 391-407. doi: 10.3934/dcdss.2011.4.391

[7]

S. Gatti, M. Grasselli, V. Pata, M. Squassina. Robust exponential attractors for a family of nonconserved phase-field systems with memory. Discrete & Continuous Dynamical Systems, 2005, 12 (5) : 1019-1029. doi: 10.3934/dcds.2005.12.1019

[8]

Narcisse Batangouna, Morgan Pierre. Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system. Communications on Pure & Applied Analysis, 2018, 17 (1) : 1-19. doi: 10.3934/cpaa.2018001

[9]

Eduard Feireisl, Françoise Issard-Roch, Hana Petzeltová. Long-time behaviour and convergence towards equilibria for a conserved phase field model. Discrete & Continuous Dynamical Systems, 2004, 10 (1&2) : 239-252. doi: 10.3934/dcds.2004.10.239

[10]

Pavel Krejčí, Songmu Zheng. Pointwise asymptotic convergence of solutions for a phase separation model. Discrete & Continuous Dynamical Systems, 2006, 16 (1) : 1-18. doi: 10.3934/dcds.2006.16.1

[11]

Denis Danilov, Britta Nestler. Phase-field modelling of nonequilibrium partitioning during rapid solidification in a non-dilute binary alloy. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1035-1047. doi: 10.3934/dcds.2006.15.1035

[12]

Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949

[13]

Nobuyuki Kenmochi, Jürgen Sprekels. Phase-field systems with vectorial order parameters including diffusional hysteresis effects. Communications on Pure & Applied Analysis, 2002, 1 (4) : 495-511. doi: 10.3934/cpaa.2002.1.495

[14]

Ahmed Bonfoh, Ibrahim A. Suleman. Robust exponential attractors for singularly perturbed conserved phase-field systems with no growth assumption on the nonlinear term. Communications on Pure & Applied Analysis, 2021, 20 (10) : 3639-3666. doi: 10.3934/cpaa.2021125

[15]

Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 115-126. doi: 10.3934/dcdss.2012.5.115

[16]

José Luiz Boldrini, Gabriela Planas. A tridimensional phase-field model with convection for phase change of an alloy. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 429-450. doi: 10.3934/dcds.2005.13.429

[17]

Josu Doncel, Nicolas Gast, Bruno Gaujal. Discrete mean field games: Existence of equilibria and convergence. Journal of Dynamics & Games, 2019, 6 (3) : 221-239. doi: 10.3934/jdg.2019016

[18]

Alain Miranville, Costică Moroşanu. Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 537-556. doi: 10.3934/dcdss.2016011

[19]

Levon Nurbekyan. One-dimensional, non-local, first-order stationary mean-field games with congestion: A Fourier approach. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 963-990. doi: 10.3934/dcdss.2018057

[20]

Maurizio Grasselli, Hao Wu. Robust exponential attractors for the modified phase-field crystal equation. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2539-2564. doi: 10.3934/dcds.2015.35.2539

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (105)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]