-
Previous Article
A remark on Hardy type inequalities with remainder terms
- DCDS-S Home
- This Issue
-
Next Article
Preface
Symmetries in an overdetermined problem for the Green's function
1. | SISSA, via Bonomea 265, 34136 Trieste, Italy |
2. | Dipartimento di Matematica "U. Dini", Università degli Studi di Firenze, viale Morgagni 67/A, 50134 Firenze, Italy |
References:
[1] |
G. Alessandrini and E. Rosset, Symmetry of singular solutions of degenerate quasilinear elliptic equations, Rend. Sem. Mat. Univ. Trieste, 39 (2007), 1-8. |
[2] |
P. L. Duren, "Theory of $H^p$ Spaces," Academic Press, New York, 1970. |
[3] |
P. L. Duren, "Univalent Functions," Springer-Verlag, New York, 1983. |
[4] |
L. E. Fraenkel, "An Introduction to Maximum Principles and Symmetry in Elliptic Problems," Cambridge University Press, Cambridge, 2000. |
[5] |
G. M. Goluzin, "Geometric Theory of Functions of a Complex Variable," American Mathematical Society, Providence, 1969. |
[6] |
B. Gustafsson and A. Vasil'ev, "Conformal and Potential Analysis in Hele-Shaw Cells," Birkhäuser Verlag, Basel, 2006. |
[7] |
P. Koosis, "Introduction to $H_p$ Spaces," Cambridge University Press, Cambridge, 1998. |
[8] |
J. L. Lewis and A. Vogel, On some almost everywhere symmetry theorems, in "Progr. Nonlinear Differential Equations Appl.," 7, Birkhäuser Boston, Massachusetts, (1992), 347-374. |
[9] |
A. I. Markushevich, "Theory of Functions of a Complex Variable," Prentice-Hall, Englewood Cliffs, 1965. |
[10] |
L. E. Payne and P. W. Schaefer, Duality theorems in some overdetermined boundary value problems, Math. Meth. Appl. Sci., 11 (1989), 805-819.
doi: doi:10.1002/mma.1670110606. |
[11] |
J. Privalov, Sur les fonctions conjuguées, Bulletin de la S. M. F., 44 (1916), 100-103. |
[12] |
M. Sakai, "Quadrature Domains," Springer-Verlag, Berlin, 1982. |
[13] |
J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.
doi: doi:10.1007/BF00250468. |
[14] |
H. F. Weinberger, Remark on the preceding paper of Serrin, Arch. Rational Mech. Anal., 43 (1971), 319-320.
doi: doi:10.1007/BF00250469. |
show all references
References:
[1] |
G. Alessandrini and E. Rosset, Symmetry of singular solutions of degenerate quasilinear elliptic equations, Rend. Sem. Mat. Univ. Trieste, 39 (2007), 1-8. |
[2] |
P. L. Duren, "Theory of $H^p$ Spaces," Academic Press, New York, 1970. |
[3] |
P. L. Duren, "Univalent Functions," Springer-Verlag, New York, 1983. |
[4] |
L. E. Fraenkel, "An Introduction to Maximum Principles and Symmetry in Elliptic Problems," Cambridge University Press, Cambridge, 2000. |
[5] |
G. M. Goluzin, "Geometric Theory of Functions of a Complex Variable," American Mathematical Society, Providence, 1969. |
[6] |
B. Gustafsson and A. Vasil'ev, "Conformal and Potential Analysis in Hele-Shaw Cells," Birkhäuser Verlag, Basel, 2006. |
[7] |
P. Koosis, "Introduction to $H_p$ Spaces," Cambridge University Press, Cambridge, 1998. |
[8] |
J. L. Lewis and A. Vogel, On some almost everywhere symmetry theorems, in "Progr. Nonlinear Differential Equations Appl.," 7, Birkhäuser Boston, Massachusetts, (1992), 347-374. |
[9] |
A. I. Markushevich, "Theory of Functions of a Complex Variable," Prentice-Hall, Englewood Cliffs, 1965. |
[10] |
L. E. Payne and P. W. Schaefer, Duality theorems in some overdetermined boundary value problems, Math. Meth. Appl. Sci., 11 (1989), 805-819.
doi: doi:10.1002/mma.1670110606. |
[11] |
J. Privalov, Sur les fonctions conjuguées, Bulletin de la S. M. F., 44 (1916), 100-103. |
[12] |
M. Sakai, "Quadrature Domains," Springer-Verlag, Berlin, 1982. |
[13] |
J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304-318.
doi: doi:10.1007/BF00250468. |
[14] |
H. F. Weinberger, Remark on the preceding paper of Serrin, Arch. Rational Mech. Anal., 43 (1971), 319-320.
doi: doi:10.1007/BF00250469. |
[1] |
Jeremiah Birrell. A posteriori error bounds for two point boundary value problems: A green's function approach. Journal of Computational Dynamics, 2015, 2 (2) : 143-164. doi: 10.3934/jcd.2015001 |
[2] |
Peter Bella, Arianna Giunti. Green's function for elliptic systems: Moment bounds. Networks and Heterogeneous Media, 2018, 13 (1) : 155-176. doi: 10.3934/nhm.2018007 |
[3] |
Sungwon Cho. Alternative proof for the existence of Green's function. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1307-1314. doi: 10.3934/cpaa.2011.10.1307 |
[4] |
Hasib Khan, Cemil Tunc, Aziz Khan. Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2475-2487. doi: 10.3934/dcdss.2020139 |
[5] |
Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure and Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501 |
[6] |
Seick Kim, Longjuan Xu. Green's function for second order parabolic equations with singular lower order coefficients. Communications on Pure and Applied Analysis, 2022, 21 (1) : 1-21. doi: 10.3934/cpaa.2021164 |
[7] |
David Hoff. Pointwise bounds for the Green's function for the Neumann-Laplace operator in $ \text{R}^3 $. Kinetic and Related Models, 2022, 15 (4) : 535-550. doi: 10.3934/krm.2021037 |
[8] |
Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems and Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487 |
[9] |
Jongkeun Choi, Ki-Ahm Lee. The Green function for the Stokes system with measurable coefficients. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1989-2022. doi: 10.3934/cpaa.2017098 |
[10] |
Zhi-Min Chen. Straightforward approximation of the translating and pulsating free surface Green function. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2767-2783. doi: 10.3934/dcdsb.2014.19.2767 |
[11] |
Claudia Bucur. Some observations on the Green function for the ball in the fractional Laplace framework. Communications on Pure and Applied Analysis, 2016, 15 (2) : 657-699. doi: 10.3934/cpaa.2016.15.657 |
[12] |
Panos K. Palamides, Alex P. Palamides. Singular boundary value problems, via Sperner's lemma. Conference Publications, 2007, 2007 (Special) : 814-823. doi: 10.3934/proc.2007.2007.814 |
[13] |
Olga A. Brezhneva, Alexey A. Tret’yakov, Jerrold E. Marsden. Higher--order implicit function theorems and degenerate nonlinear boundary-value problems. Communications on Pure and Applied Analysis, 2008, 7 (2) : 293-315. doi: 10.3934/cpaa.2008.7.293 |
[14] |
J. Cruz-Sampedro. Boundary values of the resolvent of Schrödinger hamiltonians with potentials of order zero. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1061-1076. doi: 10.3934/dcds.2013.33.1061 |
[15] |
Chiu-Ya Lan, Huey-Er Lin, Shih-Hsien Yu. The Green's functions for the Broadwell Model in a half space problem. Networks and Heterogeneous Media, 2006, 1 (1) : 167-183. doi: 10.3934/nhm.2006.1.167 |
[16] |
X. X. Huang, D. Li, Xiaoqi Yang. Convergence of optimal values of quadratic penalty problems for mathematical programs with complementarity constraints. Journal of Industrial and Management Optimization, 2006, 2 (3) : 287-296. doi: 10.3934/jimo.2006.2.287 |
[17] |
Colin J. Cotter, Michael John Priestley Cullen. Particle relabelling symmetries and Noether's theorem for vertical slice models. Journal of Geometric Mechanics, 2019, 11 (2) : 139-151. doi: 10.3934/jgm.2019007 |
[18] |
Florio M. Ciaglia, Fabio Di Cosmo, Alberto Ibort, Giuseppe Marmo, Luca Schiavone. Schwinger's picture of quantum mechanics: 2-groupoids and symmetries. Journal of Geometric Mechanics, 2021, 13 (3) : 333-354. doi: 10.3934/jgm.2021008 |
[19] |
Agnieszka Badeńska. No entire function with real multipliers in class $\mathcal{S}$. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3321-3327. doi: 10.3934/dcds.2013.33.3321 |
[20] |
Alfonso Sorrentino. Computing Mather's $\beta$-function for Birkhoff billiards. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5055-5082. doi: 10.3934/dcds.2015.35.5055 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]