- Previous Article
- DCDS-S Home
- This Issue
-
Next Article
Approximating the large time asymptotic reaction zone solution for fractional order kinetics $A^n B^m$
Experimental data for solid tumor cells: Proliferation curves and time-changes of heat shock proteins
1. | Cluster of Biotechnology and Chemistry Systems, Graduate School of Systems Engineering, Kinki University, 1 Takayaumenobe, Higashihiroshima, Hiroshima, 739-2116, Japan, Japan, Japan |
2. | Center for the Advancement of Higher Education, Faculty of Engineering, Kinki University, 1 Takayaumenobe, Higashihiroshima, Hiroshima, 739-2116, Japan |
3. | Cluster of Electronic Engineering and Information Science, Graduate School of Systems Engineering, Kinki University, 1 Takayaumenobe, Higashihiroshima, Hiroshima, 739-2116, Japan |
References:
[1] |
A. Ito, K. Yamamoto, Y. Yanagi and K. Hosono, Key-pathway analysis in biochemical reaction of HSP synthesis process, Proceedings of the 2009 IEEE International Conference on Networking, Sensing and Control, Okayama, Japan, March 26-29, (2009), 474-479.
doi: 10.1109/ICNSC.2009.4919322. |
[2] |
T. R. Rieger, R. I. Morimoto and V. Hatzimanikatis, Mathematical modeling of the eukaryotic heat-shock response: Dynamics of the HSP70 promoter, Biophysical Journal, 88 (2005), 1646-1658.
doi: 10.1529/biophysj.104.055301. |
[3] |
Y. Yanagi and A. Ito, Numerical simulations of heat shock protein synthesis and tumor invasion phenimenon, GAKUTO Inter. Ser., Math. Sci. Appl., 29 (2008), 211-226. |
[4] |
Z. Szymańska, J. Urbański and A. Marciniak-Czochra, Mathematical modelling of the influence of heat shock proteins on cancer invasion of tissue, J. Math. Biol., 58 (2009), 819-844.
doi: 10.1007/s00285-008-0220-0. |
show all references
References:
[1] |
A. Ito, K. Yamamoto, Y. Yanagi and K. Hosono, Key-pathway analysis in biochemical reaction of HSP synthesis process, Proceedings of the 2009 IEEE International Conference on Networking, Sensing and Control, Okayama, Japan, March 26-29, (2009), 474-479.
doi: 10.1109/ICNSC.2009.4919322. |
[2] |
T. R. Rieger, R. I. Morimoto and V. Hatzimanikatis, Mathematical modeling of the eukaryotic heat-shock response: Dynamics of the HSP70 promoter, Biophysical Journal, 88 (2005), 1646-1658.
doi: 10.1529/biophysj.104.055301. |
[3] |
Y. Yanagi and A. Ito, Numerical simulations of heat shock protein synthesis and tumor invasion phenimenon, GAKUTO Inter. Ser., Math. Sci. Appl., 29 (2008), 211-226. |
[4] |
Z. Szymańska, J. Urbański and A. Marciniak-Czochra, Mathematical modelling of the influence of heat shock proteins on cancer invasion of tissue, J. Math. Biol., 58 (2009), 819-844.
doi: 10.1007/s00285-008-0220-0. |
[1] |
Massimiliano Guzzo, Giancarlo Benettin. A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 1-28. doi: 10.3934/dcdsb.2001.1.1 |
[2] |
Michael V. Klibanov, Loc H. Nguyen, Anders Sullivan, Lam Nguyen. A globally convergent numerical method for a 1-d inverse medium problem with experimental data. Inverse Problems and Imaging, 2016, 10 (4) : 1057-1085. doi: 10.3934/ipi.2016032 |
[3] |
Michael V. Klibanov, Thuy T. Le, Loc H. Nguyen, Anders Sullivan, Lam Nguyen. Convexification-based globally convergent numerical method for a 1D coefficient inverse problem with experimental data. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2021068 |
[4] |
Kai-Seng Chou, Ying-Chuen Kwong. General initial data for a class of parabolic equations including the curve shortening problem. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2963-2986. doi: 10.3934/dcds.2020157 |
[5] |
Ahuod Alsheri, Ebraheem O. Alzahrani, Asim Asiri, Mohamed M. El-Dessoky, Yang Kuang. Tumor growth dynamics with nutrient limitation and cell proliferation time delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3771-3782. doi: 10.3934/dcdsb.2017189 |
[6] |
Andrei V. Dmitruk, Nikolai P. Osmolovskii. Proof of the maximum principle for a problem with state constraints by the v-change of time variable. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2189-2204. doi: 10.3934/dcdsb.2019090 |
[7] |
Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3029-3052. doi: 10.3934/dcdsb.2016086 |
[8] |
Jochen Bröcker. Existence and uniqueness for variational data assimilation in continuous time. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021050 |
[9] |
Graeme Wake, Anthony Pleasants, Alan Beedle, Peter Gluckman. A model for phenotype change in a stochastic framework. Mathematical Biosciences & Engineering, 2010, 7 (3) : 719-728. doi: 10.3934/mbe.2010.7.719 |
[10] |
Diana M. Thomas, Ashley Ciesla, James A. Levine, John G. Stevens, Corby K. Martin. A mathematical model of weight change with adaptation. Mathematical Biosciences & Engineering, 2009, 6 (4) : 873-887. doi: 10.3934/mbe.2009.6.873 |
[11] |
Frank Trujillo. Uniqueness properties of the KAM curve. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5165-5182. doi: 10.3934/dcds.2021072 |
[12] |
Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581 |
[13] |
Michael V. Klibanov. Travel time tomography with formally determined incomplete data in 3D. Inverse Problems and Imaging, 2019, 13 (6) : 1367-1393. doi: 10.3934/ipi.2019060 |
[14] |
Tuan Phung-Duc, Ken'ichi Kawanishi. Multiserver retrial queue with setup time and its application to data centers. Journal of Industrial and Management Optimization, 2019, 15 (1) : 15-35. doi: 10.3934/jimo.2018030 |
[15] |
Kazufumi Ito, Karim Ramdani, Marius Tucsnak. A time reversal based algorithm for solving initial data inverse problems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 641-652. doi: 10.3934/dcdss.2011.4.641 |
[16] |
Loïc Bourdin, Emmanuel Trélat. Optimal sampled-data control, and generalizations on time scales. Mathematical Control and Related Fields, 2016, 6 (1) : 53-94. doi: 10.3934/mcrf.2016.6.53 |
[17] |
Eduard Feireisl, Hana Petzeltová, Konstantina Trivisa. Multicomponent reactive flows: Global-in-time existence for large data. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1017-1047. doi: 10.3934/cpaa.2008.7.1017 |
[18] |
Lu Xian, Henry Adams, Chad M. Topaz, Lori Ziegelmeier. Capturing dynamics of time-varying data via topology. Foundations of Data Science, 2022, 4 (1) : 1-36. doi: 10.3934/fods.2021033 |
[19] |
M. Núñez-López, J. X. Velasco-Hernández, P. A. Marquet. The dynamics of technological change under constraints: Adopters and resources. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3299-3317. doi: 10.3934/dcdsb.2014.19.3299 |
[20] |
Hans-Christoph Grunau, Guido Sweers. A clamped plate with a uniform weight may change sign. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 761-766. doi: 10.3934/dcdss.2014.7.761 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]