February  2012, 5(1): 235-244. doi: 10.3934/dcdss.2012.5.235

Experimental data for solid tumor cells: Proliferation curves and time-changes of heat shock proteins

1. 

Cluster of Biotechnology and Chemistry Systems, Graduate School of Systems Engineering, Kinki University, 1 Takayaumenobe, Higashihiroshima, Hiroshima, 739-2116, Japan, Japan, Japan

2. 

Center for the Advancement of Higher Education, Faculty of Engineering, Kinki University, 1 Takayaumenobe, Higashihiroshima, Hiroshima, 739-2116, Japan

3. 

Cluster of Electronic Engineering and Information Science, Graduate School of Systems Engineering, Kinki University, 1 Takayaumenobe, Higashihiroshima, Hiroshima, 739-2116, Japan

Received  July 2009 Revised  December 2009 Published  February 2011

We consider a relation between proliferation of solid tumor cells and time-changes of the quantities of heat shock proteins in them. To do so, in the present paper we start to obtain some experimental data of the proliferation curves of solid tumor cells, actually, A549 and HepG2, as well as the time-changes of proteins, especially HSP90 and HSP72, in them. And we propose a mathematical model to re-create the experimental data of the proliferation curves and the time-changes of the quantities of heat shock proteins, which is described by ODE systems. Finally, we discuss a problem which exists between mitosis of solid tumor cells and time-changes of the quantities of heat shock proteins, from the viewpoint of biotechnology.
Citation: Kazuhiko Yamamoto, Kiyoshi Hosono, Hiroko Nakayama, Akio Ito, Yuichi Yanagi. Experimental data for solid tumor cells: Proliferation curves and time-changes of heat shock proteins. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 235-244. doi: 10.3934/dcdss.2012.5.235
References:
[1]

A. Ito, K. Yamamoto, Y. Yanagi and K. Hosono, Key-pathway analysis in biochemical reaction of HSP synthesis process, Proceedings of the 2009 IEEE International Conference on Networking, Sensing and Control, Okayama, Japan, March 26-29, (2009), 474-479. doi: 10.1109/ICNSC.2009.4919322.

[2]

T. R. Rieger, R. I. Morimoto and V. Hatzimanikatis, Mathematical modeling of the eukaryotic heat-shock response: Dynamics of the HSP70 promoter, Biophysical Journal, 88 (2005), 1646-1658. doi: 10.1529/biophysj.104.055301.

[3]

Y. Yanagi and A. Ito, Numerical simulations of heat shock protein synthesis and tumor invasion phenimenon, GAKUTO Inter. Ser., Math. Sci. Appl., 29 (2008), 211-226.

[4]

Z. Szymańska, J. Urbański and A. Marciniak-Czochra, Mathematical modelling of the influence of heat shock proteins on cancer invasion of tissue, J. Math. Biol., 58 (2009), 819-844. doi: 10.1007/s00285-008-0220-0.

show all references

References:
[1]

A. Ito, K. Yamamoto, Y. Yanagi and K. Hosono, Key-pathway analysis in biochemical reaction of HSP synthesis process, Proceedings of the 2009 IEEE International Conference on Networking, Sensing and Control, Okayama, Japan, March 26-29, (2009), 474-479. doi: 10.1109/ICNSC.2009.4919322.

[2]

T. R. Rieger, R. I. Morimoto and V. Hatzimanikatis, Mathematical modeling of the eukaryotic heat-shock response: Dynamics of the HSP70 promoter, Biophysical Journal, 88 (2005), 1646-1658. doi: 10.1529/biophysj.104.055301.

[3]

Y. Yanagi and A. Ito, Numerical simulations of heat shock protein synthesis and tumor invasion phenimenon, GAKUTO Inter. Ser., Math. Sci. Appl., 29 (2008), 211-226.

[4]

Z. Szymańska, J. Urbański and A. Marciniak-Czochra, Mathematical modelling of the influence of heat shock proteins on cancer invasion of tissue, J. Math. Biol., 58 (2009), 819-844. doi: 10.1007/s00285-008-0220-0.

[1]

Massimiliano Guzzo, Giancarlo Benettin. A spectral formulation of the Nekhoroshev theorem and its relevance for numerical and experimental data analysis. Discrete and Continuous Dynamical Systems - B, 2001, 1 (1) : 1-28. doi: 10.3934/dcdsb.2001.1.1

[2]

Michael V. Klibanov, Loc H. Nguyen, Anders Sullivan, Lam Nguyen. A globally convergent numerical method for a 1-d inverse medium problem with experimental data. Inverse Problems and Imaging, 2016, 10 (4) : 1057-1085. doi: 10.3934/ipi.2016032

[3]

Michael V. Klibanov, Thuy T. Le, Loc H. Nguyen, Anders Sullivan, Lam Nguyen. Convexification-based globally convergent numerical method for a 1D coefficient inverse problem with experimental data. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2021068

[4]

Kai-Seng Chou, Ying-Chuen Kwong. General initial data for a class of parabolic equations including the curve shortening problem. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2963-2986. doi: 10.3934/dcds.2020157

[5]

Ahuod Alsheri, Ebraheem O. Alzahrani, Asim Asiri, Mohamed M. El-Dessoky, Yang Kuang. Tumor growth dynamics with nutrient limitation and cell proliferation time delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3771-3782. doi: 10.3934/dcdsb.2017189

[6]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Proof of the maximum principle for a problem with state constraints by the v-change of time variable. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2189-2204. doi: 10.3934/dcdsb.2019090

[7]

Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3029-3052. doi: 10.3934/dcdsb.2016086

[8]

Jochen Bröcker. Existence and uniqueness for variational data assimilation in continuous time. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021050

[9]

Graeme Wake, Anthony Pleasants, Alan Beedle, Peter Gluckman. A model for phenotype change in a stochastic framework. Mathematical Biosciences & Engineering, 2010, 7 (3) : 719-728. doi: 10.3934/mbe.2010.7.719

[10]

Diana M. Thomas, Ashley Ciesla, James A. Levine, John G. Stevens, Corby K. Martin. A mathematical model of weight change with adaptation. Mathematical Biosciences & Engineering, 2009, 6 (4) : 873-887. doi: 10.3934/mbe.2009.6.873

[11]

Frank Trujillo. Uniqueness properties of the KAM curve. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5165-5182. doi: 10.3934/dcds.2021072

[12]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[13]

Michael V. Klibanov. Travel time tomography with formally determined incomplete data in 3D. Inverse Problems and Imaging, 2019, 13 (6) : 1367-1393. doi: 10.3934/ipi.2019060

[14]

Tuan Phung-Duc, Ken'ichi Kawanishi. Multiserver retrial queue with setup time and its application to data centers. Journal of Industrial and Management Optimization, 2019, 15 (1) : 15-35. doi: 10.3934/jimo.2018030

[15]

Kazufumi Ito, Karim Ramdani, Marius Tucsnak. A time reversal based algorithm for solving initial data inverse problems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 641-652. doi: 10.3934/dcdss.2011.4.641

[16]

Loïc Bourdin, Emmanuel Trélat. Optimal sampled-data control, and generalizations on time scales. Mathematical Control and Related Fields, 2016, 6 (1) : 53-94. doi: 10.3934/mcrf.2016.6.53

[17]

Eduard Feireisl, Hana Petzeltová, Konstantina Trivisa. Multicomponent reactive flows: Global-in-time existence for large data. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1017-1047. doi: 10.3934/cpaa.2008.7.1017

[18]

Lu Xian, Henry Adams, Chad M. Topaz, Lori Ziegelmeier. Capturing dynamics of time-varying data via topology. Foundations of Data Science, 2022, 4 (1) : 1-36. doi: 10.3934/fods.2021033

[19]

M. Núñez-López, J. X. Velasco-Hernández, P. A. Marquet. The dynamics of technological change under constraints: Adopters and resources. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3299-3317. doi: 10.3934/dcdsb.2014.19.3299

[20]

Hans-Christoph Grunau, Guido Sweers. A clamped plate with a uniform weight may change sign. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 761-766. doi: 10.3934/dcdss.2014.7.761

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (0)

[Back to Top]