-
Previous Article
Gyrokinetic models for strongly magnetized plasmas with general magnetic shape
- DCDS-S Home
- This Issue
-
Next Article
Preface
A numerical correction of the $M1$-model in the diffusive limit
1. | Université de Nantes - Laboratoire de Mathématiques Jean Leray, 2, rue de la Houssinière, 44322 Nantes Cedex 03, France, France |
References:
[1] |
E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comp., 25 (2004), 2050-2065. |
[2] |
C. Berthon, J. Dubois and R. Turpault, Numerical approximation of the M1-model, in "Mathematical Models and Numerical Methods for Radiative Transfer" (ed. T. Goudon), Panor. Synthèses, 28, Soc. Math. France, Paris, (2009), 55-86. |
[3] |
C. Berthon, P. Charrier and B. Dubroca, An HLLC scheme to solve the M1 Model of radiative transfer in two space dimensions, J. Scie. Comput., 31 (2007), 347-389.
doi: 10.1007/s10915-006-9108-6. |
[4] |
C. Buet and S. Cordier, Asymptotic preserving scheme and numerical methods for radiative hydrodynamic models, C. R. Math. Acad. Sci. Paris, 338 (2004), 951-956.
doi: 10.1016/j.crma.2004.04.006. |
[5] |
C. Buet and B. Després, Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics, J. Quant. Spectrosc. Radiat. Transfer, 85 (2004), 385-418.
doi: 10.1016/S0022-4073(03)00233-4. |
[6] |
C. Buet and B. Després, Asymptotic preserving and positive schemes for radiation hydrodynamics, J. Compt. Phy., 215 (2006), 717-740.
doi: 10.1016/j.jcp.2005.11.011. |
[7] |
P. Charrier, B. Dubroca, G. Duffa and R. Turpault, "Multigroup Model for Radiating Flows during Atmospheric Hypersonic Re-Entry," proceedings of International Workshop on Radiation of High Temperature Gases in Atmospheric Entry, Lisbonne, Portugal, (2003), 103-110. |
[8] |
B. Dubroca and J.-L. Feugeas, Entropic moment closure hierarchy for the radiative transfer equation, C. R. Acad. Sci. Paris, Ser. I, 329 (1999), 915-920. |
[9] |
E. Godlewski and P.-A. Raviart, "Numerical Approximation of Hyperbolic Systems of Conservations Laws," Applied Mathematical Sciences, 118, Springer-Verlag, New York, 1996. |
[10] |
L. Gosse and G. Toscani, Asymptotic-preserving well-balanced scheme for the hyperbolic heat equations, C. R. Math. Acad. Sci. Paris, 334 (2002), 337-342.
doi: 10.1016/S1631-073X(02)02257-4. |
[11] |
J. M. Greenberg and A. Y. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33 (1996), 1-16.
doi: 10.1137/0733001. |
[12] |
A. Harten, P. D. Lax and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Review, 25 (1983), 35-61.
doi: 10.1137/1025002. |
[13] |
C. D. Levermore, Moment closure hierarchies for kinetic theory, J. Statist. Phys., 83 (1996), 1021-1065.
doi: 10.1007/BF02179552. |
[14] |
R. J. LeVeque, "Finite Volume Methods for Hyperbolic Problems," Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511791253. |
[15] |
D. Mihalas and B. W. Mihalas, "Foundation of Radiation Hydrodynamics," Oxford University Press, New York, 1984. |
[16] |
G. C. Pomraning, "The Equations of Radiation Hydrodynamics," Sciences Application, 1973. |
[17] |
J.-F. Ripoll, An averaged formulation of the M1 radiation model with presumed probability density function for turbulent flows, J. Quant. Spectrosc. Radiat. Transfer, 83 (2004), 493-517.
doi: 10.1016/S0022-4073(03)00102-X. |
[18] |
R. Turpault, A consistant multigroup model for radiative transfer and its underlying mean opacities, J. Quant. Spectrosc. Radiat. Transfer, 94 (2005), 357-371.
doi: 10.1016/j.jqsrt.2004.09.042. |
[19] |
R. Turpault, B. Dubroca, M. Frank and A. Klar, Multigroup half space moment approximations to the radiative heat transfer equations, J. Comp. Phys., 198 (2004), 363-371.
doi: 10.1016/j.jcp.2004.01.011. |
show all references
References:
[1] |
E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comp., 25 (2004), 2050-2065. |
[2] |
C. Berthon, J. Dubois and R. Turpault, Numerical approximation of the M1-model, in "Mathematical Models and Numerical Methods for Radiative Transfer" (ed. T. Goudon), Panor. Synthèses, 28, Soc. Math. France, Paris, (2009), 55-86. |
[3] |
C. Berthon, P. Charrier and B. Dubroca, An HLLC scheme to solve the M1 Model of radiative transfer in two space dimensions, J. Scie. Comput., 31 (2007), 347-389.
doi: 10.1007/s10915-006-9108-6. |
[4] |
C. Buet and S. Cordier, Asymptotic preserving scheme and numerical methods for radiative hydrodynamic models, C. R. Math. Acad. Sci. Paris, 338 (2004), 951-956.
doi: 10.1016/j.crma.2004.04.006. |
[5] |
C. Buet and B. Després, Asymptotic analysis of fluid models for the coupling of radiation and hydrodynamics, J. Quant. Spectrosc. Radiat. Transfer, 85 (2004), 385-418.
doi: 10.1016/S0022-4073(03)00233-4. |
[6] |
C. Buet and B. Després, Asymptotic preserving and positive schemes for radiation hydrodynamics, J. Compt. Phy., 215 (2006), 717-740.
doi: 10.1016/j.jcp.2005.11.011. |
[7] |
P. Charrier, B. Dubroca, G. Duffa and R. Turpault, "Multigroup Model for Radiating Flows during Atmospheric Hypersonic Re-Entry," proceedings of International Workshop on Radiation of High Temperature Gases in Atmospheric Entry, Lisbonne, Portugal, (2003), 103-110. |
[8] |
B. Dubroca and J.-L. Feugeas, Entropic moment closure hierarchy for the radiative transfer equation, C. R. Acad. Sci. Paris, Ser. I, 329 (1999), 915-920. |
[9] |
E. Godlewski and P.-A. Raviart, "Numerical Approximation of Hyperbolic Systems of Conservations Laws," Applied Mathematical Sciences, 118, Springer-Verlag, New York, 1996. |
[10] |
L. Gosse and G. Toscani, Asymptotic-preserving well-balanced scheme for the hyperbolic heat equations, C. R. Math. Acad. Sci. Paris, 334 (2002), 337-342.
doi: 10.1016/S1631-073X(02)02257-4. |
[11] |
J. M. Greenberg and A. Y. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33 (1996), 1-16.
doi: 10.1137/0733001. |
[12] |
A. Harten, P. D. Lax and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Review, 25 (1983), 35-61.
doi: 10.1137/1025002. |
[13] |
C. D. Levermore, Moment closure hierarchies for kinetic theory, J. Statist. Phys., 83 (1996), 1021-1065.
doi: 10.1007/BF02179552. |
[14] |
R. J. LeVeque, "Finite Volume Methods for Hyperbolic Problems," Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511791253. |
[15] |
D. Mihalas and B. W. Mihalas, "Foundation of Radiation Hydrodynamics," Oxford University Press, New York, 1984. |
[16] |
G. C. Pomraning, "The Equations of Radiation Hydrodynamics," Sciences Application, 1973. |
[17] |
J.-F. Ripoll, An averaged formulation of the M1 radiation model with presumed probability density function for turbulent flows, J. Quant. Spectrosc. Radiat. Transfer, 83 (2004), 493-517.
doi: 10.1016/S0022-4073(03)00102-X. |
[18] |
R. Turpault, A consistant multigroup model for radiative transfer and its underlying mean opacities, J. Quant. Spectrosc. Radiat. Transfer, 94 (2005), 357-371.
doi: 10.1016/j.jqsrt.2004.09.042. |
[19] |
R. Turpault, B. Dubroca, M. Frank and A. Klar, Multigroup half space moment approximations to the radiative heat transfer equations, J. Comp. Phys., 198 (2004), 363-371.
doi: 10.1016/j.jcp.2004.01.011. |
[1] |
Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073 |
[2] |
Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143 |
[3] |
Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673 |
[4] |
Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011 |
[5] |
Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure and Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51 |
[6] |
Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks and Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717 |
[7] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[8] |
Fumioki Asakura, Andrea Corli. The path decomposition technique for systems of hyperbolic conservation laws. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 15-32. doi: 10.3934/dcdss.2016.9.15 |
[9] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[10] |
Rinaldo M. Colombo, Graziano Guerra. Hyperbolic balance laws with a dissipative non local source. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1077-1090. doi: 10.3934/cpaa.2008.7.1077 |
[11] |
Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933 |
[12] |
María Rosa, María de los Santos Bruzón, María de la Luz Gandarias. Lie symmetries and conservation laws of a Fisher equation with nonlinear convection term. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1331-1339. doi: 10.3934/dcdss.2015.8.1331 |
[13] |
Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control and Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121 |
[14] |
Eitan Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4579-4598. doi: 10.3934/dcds.2016.36.4579 |
[15] |
Stefano Bianchini. On the shift differentiability of the flow generated by a hyperbolic system of conservation laws. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 329-350. doi: 10.3934/dcds.2000.6.329 |
[16] |
Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597 |
[17] |
Boris Andreianov, Mohamed Karimou Gazibo. Explicit formulation for the Dirichlet problem for parabolic-hyperbolic conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : 203-222. doi: 10.3934/nhm.2016.11.203 |
[18] |
Martin Frank, Cory D. Hauck, Edgar Olbrant. Perturbed, entropy-based closure for radiative transfer. Kinetic and Related Models, 2013, 6 (3) : 557-587. doi: 10.3934/krm.2013.6.557 |
[19] |
J-F. Clouët, R. Sentis. Milne problem for non-grey radiative transfer. Kinetic and Related Models, 2009, 2 (2) : 345-362. doi: 10.3934/krm.2009.2.345 |
[20] |
Leo G. Rebholz, Dehua Wang, Zhian Wang, Camille Zerfas, Kun Zhao. Initial boundary value problems for a system of parabolic conservation laws arising from chemotaxis in multi-dimensions. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3789-3838. doi: 10.3934/dcds.2019154 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]