April  2012, 5(2): 257-269. doi: 10.3934/dcdss.2012.5.257

Gyrokinetic models for strongly magnetized plasmas with general magnetic shape

1. 

Laboratoire de Mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France

Received  July 2009 Revised  February 2010 Published  September 2011

One of the main applications in plasma physics concerns the energy production through thermo-nuclear fusion. The controlled fusion requires the confinement of the plasma into a bounded domain and for this, we appeal to the magnetic confinement. Several models exist for describing the evolution of strongly magnetized plasmas. The subject matter of this paper is to provide a rigorous derivation of the guiding-center approximation in the general three dimensional setting, under the action of large stationary inhomogeneous magnetic fields.
Citation: Mihai Bostan. Gyrokinetic models for strongly magnetized plasmas with general magnetic shape. Discrete and Continuous Dynamical Systems - S, 2012, 5 (2) : 257-269. doi: 10.3934/dcdss.2012.5.257
References:
[1]

N. N. Bogoliubov and Y. A. Mitropolsky, "Asymptotic Methods in the Theory of Nonlinear Oscillations," Translated from the second Russian edition, International Monographs on Advanced Mathematics and Physics, Hindustan Publishing Corp., Delhi, Gordon and Breach Science Publishers, New York, 1961.

[2]

M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptot. Anal., 61 (2009), 91-123.

[3]

M. Bostan, The Vlasov-Maxwell system with strong initial magnetic field: Guiding-center approximation, Multiscale Model. Simul., 6 (2007), 1026-1058. doi: 10.1137/070689383.

[4]

M. Bostan, Transport equations with singular coefficients. Application to the gyrokinetic models in plasma physics, research report INRIA.

[5]

M. Bostan and T. Goudon, High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 25 (2008), 1221-1251.

[6]

Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25 (2000), 737-754.

[7]

Y. Brenier, N. Mauser and M. Puel, Incompressible Euler and e-MHD as scaling limits of the Vlasov-Maxwell system, Commun. Math. Sci., 1 (2003), 437-447.

[8]

A. J. Brizard and T. S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Modern Phys., 79 (2007), 421-468. doi: 10.1103/RevModPhys.79.421.

[9]

E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field, Asymptotic Anal., 18 (1998), 193-213.

[10]

E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation, SIAM J. Math. Anal., 32 (2001), 1227-1247. doi: 10.1137/S0036141099364243.

[11]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl. (9), 78 (1999), 791-817. doi: 10.1016/S0021-7824(99)00021-5.

[12]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field in quasineutral regime, Math. Models Methods Appl. Sci., 13 (2003), 661-714. doi: 10.1142/S0218202503002647.

[13]

V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik and L. Villard, A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation, J. Comput. Phys., 217 (2006), 395-423. doi: 10.1016/j.jcp.2006.01.023.

[14]

R. D. Hazeltine and J. D. Meiss, "Plasma Confinement," Dover Publications, Inc., Mineola, New York, 2003.

[15]

P. Morel, E. Gravier, N. Besse, A. Ghizzo and P. Bertrand, The water bag model and gyrokinetic applications, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 11-17. doi: 10.1016/j.cnsns.2007.03.016.

[16]

J.-M. Rax, "Physique des Plasmas, Cours et Applications," Dunod, 2007.

[17]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics. I. Functional Analysis," Second edition, Academic Press, New York, 1980.

show all references

References:
[1]

N. N. Bogoliubov and Y. A. Mitropolsky, "Asymptotic Methods in the Theory of Nonlinear Oscillations," Translated from the second Russian edition, International Monographs on Advanced Mathematics and Physics, Hindustan Publishing Corp., Delhi, Gordon and Breach Science Publishers, New York, 1961.

[2]

M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptot. Anal., 61 (2009), 91-123.

[3]

M. Bostan, The Vlasov-Maxwell system with strong initial magnetic field: Guiding-center approximation, Multiscale Model. Simul., 6 (2007), 1026-1058. doi: 10.1137/070689383.

[4]

M. Bostan, Transport equations with singular coefficients. Application to the gyrokinetic models in plasma physics, research report INRIA.

[5]

M. Bostan and T. Goudon, High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 25 (2008), 1221-1251.

[6]

Y. Brenier, Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25 (2000), 737-754.

[7]

Y. Brenier, N. Mauser and M. Puel, Incompressible Euler and e-MHD as scaling limits of the Vlasov-Maxwell system, Commun. Math. Sci., 1 (2003), 437-447.

[8]

A. J. Brizard and T. S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Modern Phys., 79 (2007), 421-468. doi: 10.1103/RevModPhys.79.421.

[9]

E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with strong external magnetic field, Asymptotic Anal., 18 (1998), 193-213.

[10]

E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation, SIAM J. Math. Anal., 32 (2001), 1227-1247. doi: 10.1137/S0036141099364243.

[11]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl. (9), 78 (1999), 791-817. doi: 10.1016/S0021-7824(99)00021-5.

[12]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field in quasineutral regime, Math. Models Methods Appl. Sci., 13 (2003), 661-714. doi: 10.1142/S0218202503002647.

[13]

V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik and L. Villard, A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation, J. Comput. Phys., 217 (2006), 395-423. doi: 10.1016/j.jcp.2006.01.023.

[14]

R. D. Hazeltine and J. D. Meiss, "Plasma Confinement," Dover Publications, Inc., Mineola, New York, 2003.

[15]

P. Morel, E. Gravier, N. Besse, A. Ghizzo and P. Bertrand, The water bag model and gyrokinetic applications, Commun. Nonlinear Sci. Numer. Simul., 13 (2008), 11-17. doi: 10.1016/j.cnsns.2007.03.016.

[16]

J.-M. Rax, "Physique des Plasmas, Cours et Applications," Dunod, 2007.

[17]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics. I. Functional Analysis," Second edition, Academic Press, New York, 1980.

[1]

Jean-Philippe Braeunig, Nicolas Crouseilles, Michel Mehrenberger, Eric Sonnendrücker. Guiding-center simulations on curvilinear meshes. Discrete and Continuous Dynamical Systems - S, 2012, 5 (2) : 271-282. doi: 10.3934/dcdss.2012.5.271

[2]

Naoufel Ben Abdallah, Raymond El Hajj. Diffusion and guiding center approximation for particle transport in strong magnetic fields. Kinetic and Related Models, 2008, 1 (3) : 331-354. doi: 10.3934/krm.2008.1.331

[3]

Eduardo Lara, Rodolfo Rodríguez, Pablo Venegas. Spectral approximation of the curl operator in multiply connected domains. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 235-253. doi: 10.3934/dcdss.2016.9.235

[4]

Stefan Klus, Péter Koltai, Christof Schütte. On the numerical approximation of the Perron-Frobenius and Koopman operator. Journal of Computational Dynamics, 2016, 3 (1) : 51-79. doi: 10.3934/jcd.2016003

[5]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3043-3054. doi: 10.3934/dcdss.2020463

[6]

Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial and Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977

[7]

Mei Ju Luo, Yi Zeng Chen. Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2016, 12 (1) : 1-15. doi: 10.3934/jimo.2016.12.1

[8]

Mingzheng Wang, M. Montaz Ali, Guihua Lin. Sample average approximation method for stochastic complementarity problems with applications to supply chain supernetworks. Journal of Industrial and Management Optimization, 2011, 7 (2) : 317-345. doi: 10.3934/jimo.2011.7.317

[9]

Ugo Bessi. Viscous Aubry-Mather theory and the Vlasov equation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 379-420. doi: 10.3934/dcds.2014.34.379

[10]

Frédérique Charles, Bruno Després, Benoît Perthame, Rémis Sentis. Nonlinear stability of a Vlasov equation for magnetic plasmas. Kinetic and Related Models, 2013, 6 (2) : 269-290. doi: 10.3934/krm.2013.6.269

[11]

Emmanuel Frénod, Sever A. Hirstoaga, Eric Sonnendrücker. An exponential integrator for a highly oscillatory vlasov equation. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 169-183. doi: 10.3934/dcdss.2015.8.169

[12]

Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198

[13]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[14]

Laurent Bernis, Laurent Desvillettes. Propagation of singularities for classical solutions of the Vlasov-Poisson-Boltzmann equation. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 13-33. doi: 10.3934/dcds.2009.24.13

[15]

Armando Majorana. Approximate explicit stationary solutions to a Vlasov equation for planetary rings. Kinetic and Related Models, 2017, 10 (2) : 467-479. doi: 10.3934/krm.2017018

[16]

Baptiste Fedele, Claudia Negulescu. Numerical study of an anisotropic Vlasov equation arising in plasma physics. Kinetic and Related Models, 2018, 11 (6) : 1395-1426. doi: 10.3934/krm.2018055

[17]

Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223

[18]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[19]

John A. D. Appleby, John A. Daniels. Exponential growth in the solution of an affine stochastic differential equation with an average functional and financial market bubbles. Conference Publications, 2011, 2011 (Special) : 91-101. doi: 10.3934/proc.2011.2011.91

[20]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations and Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]