April  2012, 5(2): 271-282. doi: 10.3934/dcdss.2012.5.271

Guiding-center simulations on curvilinear meshes

1. 

INRIA Nancy-Grand Est, 615 rue du Jardin Botanique, 54600 Villers-lès-Nancy, IRMA, Université de Strasbourg, 7 rue René-Descartes, 67084 Strasbourg Cedex, France, France, France, France

Received  July 2009 Revised  December 2009 Published  September 2011

The purpose of this work is to design simulation tools for magnetised plasmas in the ITER project framework. The specific issue we consider is the simulation of turbulent transport in the core of a Tokamak plasma, for which a 5D gyrokinetic model is generally used, where the fast gyromotion of the particles in the strong magnetic field is averaged in order to remove the associated fast time-scale and to reduce the dimension of 6D phase space involved in the full Vlasov model. Very accurate schemes and efficient parallel algorithms are required to cope with these still very costly simulations. The presence of a strong magnetic field constrains the time scales of the particle motion along and accross the magnetic field line, the latter being at least an order of magnitude slower. This also has an impact on the spatial variations of the observables. Therefore, the efficiency of the algorithm can be improved considerably by aligning the mesh with the magnetic field lines. For this reason, we study the behavior of semi-Lagrangian solvers in curvilinear coordinates. Before tackling the full gyrokinetic model in a future work, we consider here the reduced 2D Guiding-Center model. We introduce our numerical algorithm and provide some numerical results showing its good properties.
Citation: Jean-Philippe Braeunig, Nicolas Crouseilles, Michel Mehrenberger, Eric Sonnendrücker. Guiding-center simulations on curvilinear meshes. Discrete and Continuous Dynamical Systems - S, 2012, 5 (2) : 271-282. doi: 10.3934/dcdss.2012.5.271
References:
[1]

A. J. Brizard and T. S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys., 79 (2007), 421-468. doi: 10.1103/RevModPhys.79.421.

[2]

N. Crouseilles, M. Mehrenberger and E. Sonnendrücker, Conservative semi-Lagrangian schemes for Vlasov equations, J. Comput. Phys., 229 (2010), 1927-1953. doi: 10.1016/j.jcp.2009.11.007.

[3]

C. Z. Cheng and G. Knorr, The integration of the Vlasov equation in conÞguration space, J. Comput. Phys., 22 (1976), 330-351. doi: 10.1016/0021-9991(76)90053-X.

[4]

A. M. Dimits, et al., Comparisons and physics basis of tokamak transport models and turbulence simulations, Phys. Plasmas, 7 (2000), pp. 969. doi: 10.1063/1.873896.

[5]

N. Crouseilles, G. Latu and E. Sonnendrücker, A Vlasov solver based on local cubic spline interpolation on patches, J. Comput. Phys., 228 (2009), 1429-1446. doi: 10.1016/j.jcp.2008.10.041.

[6]

, X. Garbet,, private communication, (2009). 

[7]

V. Grandgirard, et al., Global full-f gyrokinetic simulations of plasma turbulence, Plasma Phys. Control. Fus., 49B (2007), 173-182. doi: 10.1088/0741-3335/49/12B/S16.

[8]

V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik and L. Villard, A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation, J. Comput. Physics, 217 (2006), 395-423. doi: 10.1016/j.jcp.2006.01.023.

[9]

M. Shoucri, A two-level implicit scheme for the numerical solution of the linearized vorticity equation, Int. J. Numer. Meth. Eng., 17 (1981), pp. 1525. doi: 10.1002/nme.1620171007.

[10]

E. Sonnendrücker, J. Roche, P. Bertrand and A. Ghizzo, The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Physics, 149 (1999), 201-220. doi: 10.1006/jcph.1998.6148.

[11]

M. Zerroukat, N. Wood and A. Staniforth, The parabolic spline method (PSM) for conservative transport problems, Int. J. Numer. Meth. Fluids, 51 (2006), 1297-1318. doi: 10.1002/fld.1154.

[12]

M. Zerroukat, N. Wood and A. Staniforth, Application of the parabolic spline method (PSM) to a multi-dimensional conservative semi-Lagrangian transport scheme (SLICE), J. Comput. Phys, 225 (2007), 935-948. doi: 10.1016/j.jcp.2007.01.006.

show all references

References:
[1]

A. J. Brizard and T. S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys., 79 (2007), 421-468. doi: 10.1103/RevModPhys.79.421.

[2]

N. Crouseilles, M. Mehrenberger and E. Sonnendrücker, Conservative semi-Lagrangian schemes for Vlasov equations, J. Comput. Phys., 229 (2010), 1927-1953. doi: 10.1016/j.jcp.2009.11.007.

[3]

C. Z. Cheng and G. Knorr, The integration of the Vlasov equation in conÞguration space, J. Comput. Phys., 22 (1976), 330-351. doi: 10.1016/0021-9991(76)90053-X.

[4]

A. M. Dimits, et al., Comparisons and physics basis of tokamak transport models and turbulence simulations, Phys. Plasmas, 7 (2000), pp. 969. doi: 10.1063/1.873896.

[5]

N. Crouseilles, G. Latu and E. Sonnendrücker, A Vlasov solver based on local cubic spline interpolation on patches, J. Comput. Phys., 228 (2009), 1429-1446. doi: 10.1016/j.jcp.2008.10.041.

[6]

, X. Garbet,, private communication, (2009). 

[7]

V. Grandgirard, et al., Global full-f gyrokinetic simulations of plasma turbulence, Plasma Phys. Control. Fus., 49B (2007), 173-182. doi: 10.1088/0741-3335/49/12B/S16.

[8]

V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik and L. Villard, A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation, J. Comput. Physics, 217 (2006), 395-423. doi: 10.1016/j.jcp.2006.01.023.

[9]

M. Shoucri, A two-level implicit scheme for the numerical solution of the linearized vorticity equation, Int. J. Numer. Meth. Eng., 17 (1981), pp. 1525. doi: 10.1002/nme.1620171007.

[10]

E. Sonnendrücker, J. Roche, P. Bertrand and A. Ghizzo, The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Physics, 149 (1999), 201-220. doi: 10.1006/jcph.1998.6148.

[11]

M. Zerroukat, N. Wood and A. Staniforth, The parabolic spline method (PSM) for conservative transport problems, Int. J. Numer. Meth. Fluids, 51 (2006), 1297-1318. doi: 10.1002/fld.1154.

[12]

M. Zerroukat, N. Wood and A. Staniforth, Application of the parabolic spline method (PSM) to a multi-dimensional conservative semi-Lagrangian transport scheme (SLICE), J. Comput. Phys, 225 (2007), 935-948. doi: 10.1016/j.jcp.2007.01.006.

[1]

Alexandre Mouton. Two-scale semi-Lagrangian simulation of a charged particle beam in a periodic focusing channel. Kinetic and Related Models, 2009, 2 (2) : 251-274. doi: 10.3934/krm.2009.2.251

[2]

Elisabetta Carlini, Francisco J. Silva. A semi-Lagrangian scheme for a degenerate second order mean field game system. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4269-4292. doi: 10.3934/dcds.2015.35.4269

[3]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[4]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model for the reformulated shallow water equations. Conference Publications, 2003, 2003 (Special) : 375-385. doi: 10.3934/proc.2003.2003.375

[5]

Holger Heumann, Ralf Hiptmair. Eulerian and semi-Lagrangian methods for convection-diffusion for differential forms. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1471-1495. doi: 10.3934/dcds.2011.29.1471

[6]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[7]

Naoufel Ben Abdallah, Raymond El Hajj. Diffusion and guiding center approximation for particle transport in strong magnetic fields. Kinetic and Related Models, 2008, 1 (3) : 331-354. doi: 10.3934/krm.2008.1.331

[8]

Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067

[9]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3685-3701. doi: 10.3934/dcdss.2020466

[10]

Hongxiu Zhong, Guoliang Chen, Xueping Guo. Semi-local convergence of the Newton-HSS method under the center Lipschitz condition. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 85-99. doi: 10.3934/naco.2019007

[11]

Horst Osberger. Long-time behavior of a fully discrete Lagrangian scheme for a family of fourth order equations. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 405-434. doi: 10.3934/dcds.2017017

[12]

Frédéric Lebon, Raffaella Rizzoni. Modeling a hard, thin curvilinear interface. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1569-1586. doi: 10.3934/dcdss.2013.6.1569

[13]

Xiantao Xiao, Liwei Zhang, Jianzhong Zhang. On convergence of augmented Lagrangian method for inverse semi-definite quadratic programming problems. Journal of Industrial and Management Optimization, 2009, 5 (2) : 319-339. doi: 10.3934/jimo.2009.5.319

[14]

Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761

[15]

Xiaojie Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 481-497. doi: 10.3934/dcds.2016.36.481

[16]

Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations and Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017

[17]

Robert M. Strain. Coordinates in the relativistic Boltzmann theory. Kinetic and Related Models, 2011, 4 (1) : 345-359. doi: 10.3934/krm.2011.4.345

[18]

Gung-Min Gie, Makram Hamouda, Roger Témam. Boundary layers in smooth curvilinear domains: Parabolic problems. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1213-1240. doi: 10.3934/dcds.2010.26.1213

[19]

Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2047-2051. doi: 10.3934/cpaa.2017100

[20]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (102)
  • HTML views (0)
  • Cited by (1)

[Back to Top]