-
Previous Article
Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system
- DCDS-S Home
- This Issue
-
Next Article
Gyrokinetic models for strongly magnetized plasmas with general magnetic shape
Guiding-center simulations on curvilinear meshes
1. | INRIA Nancy-Grand Est, 615 rue du Jardin Botanique, 54600 Villers-lès-Nancy, IRMA, Université de Strasbourg, 7 rue René-Descartes, 67084 Strasbourg Cedex, France, France, France, France |
References:
[1] |
A. J. Brizard and T. S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys., 79 (2007), 421-468.
doi: 10.1103/RevModPhys.79.421. |
[2] |
N. Crouseilles, M. Mehrenberger and E. Sonnendrücker, Conservative semi-Lagrangian schemes for Vlasov equations, J. Comput. Phys., 229 (2010), 1927-1953.
doi: 10.1016/j.jcp.2009.11.007. |
[3] |
C. Z. Cheng and G. Knorr, The integration of the Vlasov equation in conÞguration space, J. Comput. Phys., 22 (1976), 330-351.
doi: 10.1016/0021-9991(76)90053-X. |
[4] |
A. M. Dimits, et al., Comparisons and physics basis of tokamak transport models and turbulence simulations, Phys. Plasmas, 7 (2000), pp. 969.
doi: 10.1063/1.873896. |
[5] |
N. Crouseilles, G. Latu and E. Sonnendrücker, A Vlasov solver based on local cubic spline interpolation on patches, J. Comput. Phys., 228 (2009), 1429-1446.
doi: 10.1016/j.jcp.2008.10.041. |
[6] | |
[7] |
V. Grandgirard, et al., Global full-f gyrokinetic simulations of plasma turbulence, Plasma Phys. Control. Fus., 49B (2007), 173-182.
doi: 10.1088/0741-3335/49/12B/S16. |
[8] |
V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik and L. Villard, A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation, J. Comput. Physics, 217 (2006), 395-423.
doi: 10.1016/j.jcp.2006.01.023. |
[9] |
M. Shoucri, A two-level implicit scheme for the numerical solution of the linearized vorticity equation, Int. J. Numer. Meth. Eng., 17 (1981), pp. 1525.
doi: 10.1002/nme.1620171007. |
[10] |
E. Sonnendrücker, J. Roche, P. Bertrand and A. Ghizzo, The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Physics, 149 (1999), 201-220.
doi: 10.1006/jcph.1998.6148. |
[11] |
M. Zerroukat, N. Wood and A. Staniforth, The parabolic spline method (PSM) for conservative transport problems, Int. J. Numer. Meth. Fluids, 51 (2006), 1297-1318.
doi: 10.1002/fld.1154. |
[12] |
M. Zerroukat, N. Wood and A. Staniforth, Application of the parabolic spline method (PSM) to a multi-dimensional conservative semi-Lagrangian transport scheme (SLICE), J. Comput. Phys, 225 (2007), 935-948.
doi: 10.1016/j.jcp.2007.01.006. |
show all references
References:
[1] |
A. J. Brizard and T. S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys., 79 (2007), 421-468.
doi: 10.1103/RevModPhys.79.421. |
[2] |
N. Crouseilles, M. Mehrenberger and E. Sonnendrücker, Conservative semi-Lagrangian schemes for Vlasov equations, J. Comput. Phys., 229 (2010), 1927-1953.
doi: 10.1016/j.jcp.2009.11.007. |
[3] |
C. Z. Cheng and G. Knorr, The integration of the Vlasov equation in conÞguration space, J. Comput. Phys., 22 (1976), 330-351.
doi: 10.1016/0021-9991(76)90053-X. |
[4] |
A. M. Dimits, et al., Comparisons and physics basis of tokamak transport models and turbulence simulations, Phys. Plasmas, 7 (2000), pp. 969.
doi: 10.1063/1.873896. |
[5] |
N. Crouseilles, G. Latu and E. Sonnendrücker, A Vlasov solver based on local cubic spline interpolation on patches, J. Comput. Phys., 228 (2009), 1429-1446.
doi: 10.1016/j.jcp.2008.10.041. |
[6] | |
[7] |
V. Grandgirard, et al., Global full-f gyrokinetic simulations of plasma turbulence, Plasma Phys. Control. Fus., 49B (2007), 173-182.
doi: 10.1088/0741-3335/49/12B/S16. |
[8] |
V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik and L. Villard, A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation, J. Comput. Physics, 217 (2006), 395-423.
doi: 10.1016/j.jcp.2006.01.023. |
[9] |
M. Shoucri, A two-level implicit scheme for the numerical solution of the linearized vorticity equation, Int. J. Numer. Meth. Eng., 17 (1981), pp. 1525.
doi: 10.1002/nme.1620171007. |
[10] |
E. Sonnendrücker, J. Roche, P. Bertrand and A. Ghizzo, The semi-Lagrangian method for the numerical resolution of the Vlasov equation, J. Comput. Physics, 149 (1999), 201-220.
doi: 10.1006/jcph.1998.6148. |
[11] |
M. Zerroukat, N. Wood and A. Staniforth, The parabolic spline method (PSM) for conservative transport problems, Int. J. Numer. Meth. Fluids, 51 (2006), 1297-1318.
doi: 10.1002/fld.1154. |
[12] |
M. Zerroukat, N. Wood and A. Staniforth, Application of the parabolic spline method (PSM) to a multi-dimensional conservative semi-Lagrangian transport scheme (SLICE), J. Comput. Phys, 225 (2007), 935-948.
doi: 10.1016/j.jcp.2007.01.006. |
[1] |
Alexandre Mouton. Two-scale semi-Lagrangian simulation of a charged particle beam in a periodic focusing channel. Kinetic and Related Models, 2009, 2 (2) : 251-274. doi: 10.3934/krm.2009.2.251 |
[2] |
Elisabetta Carlini, Francisco J. Silva. A semi-Lagrangian scheme for a degenerate second order mean field game system. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4269-4292. doi: 10.3934/dcds.2015.35.4269 |
[3] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
[4] |
Daniel Guo, John Drake. A global semi-Lagrangian spectral model for the reformulated shallow water equations. Conference Publications, 2003, 2003 (Special) : 375-385. doi: 10.3934/proc.2003.2003.375 |
[5] |
Holger Heumann, Ralf Hiptmair. Eulerian and semi-Lagrangian methods for convection-diffusion for differential forms. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1471-1495. doi: 10.3934/dcds.2011.29.1471 |
[6] |
Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355 |
[7] |
Naoufel Ben Abdallah, Raymond El Hajj. Diffusion and guiding center approximation for particle transport in strong magnetic fields. Kinetic and Related Models, 2008, 1 (3) : 331-354. doi: 10.3934/krm.2008.1.331 |
[8] |
Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067 |
[9] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3685-3701. doi: 10.3934/dcdss.2020466 |
[10] |
Hongxiu Zhong, Guoliang Chen, Xueping Guo. Semi-local convergence of the Newton-HSS method under the center Lipschitz condition. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 85-99. doi: 10.3934/naco.2019007 |
[11] |
Horst Osberger. Long-time behavior of a fully discrete Lagrangian scheme for a family of fourth order equations. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 405-434. doi: 10.3934/dcds.2017017 |
[12] |
Frédéric Lebon, Raffaella Rizzoni. Modeling a hard, thin curvilinear interface. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1569-1586. doi: 10.3934/dcdss.2013.6.1569 |
[13] |
Xiantao Xiao, Liwei Zhang, Jianzhong Zhang. On convergence of augmented Lagrangian method for inverse semi-definite quadratic programming problems. Journal of Industrial and Management Optimization, 2009, 5 (2) : 319-339. doi: 10.3934/jimo.2009.5.319 |
[14] |
Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761 |
[15] |
Xiaojie Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 481-497. doi: 10.3934/dcds.2016.36.481 |
[16] |
Monika Eisenmann, Etienne Emmrich, Volker Mehrmann. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations and Control Theory, 2019, 8 (2) : 315-342. doi: 10.3934/eect.2019017 |
[17] |
Robert M. Strain. Coordinates in the relativistic Boltzmann theory. Kinetic and Related Models, 2011, 4 (1) : 345-359. doi: 10.3934/krm.2011.4.345 |
[18] |
Gung-Min Gie, Makram Hamouda, Roger Témam. Boundary layers in smooth curvilinear domains: Parabolic problems. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1213-1240. doi: 10.3934/dcds.2010.26.1213 |
[19] |
Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2047-2051. doi: 10.3934/cpaa.2017100 |
[20] |
Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]