-
Previous Article
High-order dimensionally split Lagrange-remap schemes for ideal magnetohydrodynamics
- DCDS-S Home
- This Issue
-
Next Article
Simulations on wave propagation in fluctuating fusion plasmas for Reflectometry applications and new developments
Models and simulations for the laser-plasma interaction and the three-wave coupling problem
1. | CEA, DAM, DIF. Bruyeres, 91297 Arpajon, France |
References:
[1] |
Ph. Ballereau, M. Casanova, F. Duboc, D. Dureau, H. Jourdren, P. Loiseau, J. Metral, O. Morice and R. Sentis, Simulation of the paraxial laser propagation coupled with hydrodynamics in 3D geometry, J. Sci. Comp., 33 (2007), 1-24.
doi: 10.1007/s10915-007-9135-y. |
[2] |
P. G. Baines, The stability of planetary waves on a sphere, J. Fluid Mech., 73 (1976), 193-213.
doi: 10.1017/S0022112076001341. |
[3] |
T. J. M. Boyd and J. G. Turner, Lagrangian studies of plasma wave interaction, 5 (1972), 881-896. |
[4] |
M. Casanova, et al., Self-generated loss of coherency in Brillouin scattering and reduction of reflectivity, Phys. Review Letters, 54 (1985), 2230-2233.
doi: 10.1103/PhysRevLett.54.2230. |
[5] |
M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interaction, Differential Integral Equations, 17 (2004), 297-330. |
[6] |
S. Desroziers, F. Nataf and R. Sentis, Simulation of laser propagation in a plasma with a frequency wave equation, J. Comp. Physics, 227 (2008), 2610-2625.
doi: 10.1016/j.jcp.2007.11.008. |
[7] |
M. Doumic, F. Duboc, F. Golse and R. Sentis, Simulation of laser beam propagation with a paraxial model in a tilted frame, J. Comp. Physics, 228 (2009), 861-880.
doi: 10.1016/j.jcp.2008.10.009. |
[8] |
L. Divol and R. L. Berger, et al., Three-dimensional modeling of laser-plasma interaction: Benchmarking our predictive modeling tools versus experiments, Phys. of Plasmas, 15 (2008), 056313. |
[9] |
B. B. Kadomtsev, "Plasma Turbulence," translated from the Russian, Academic Press, 1965. |
[10] |
J. B. Keller and R. M. Lewis, Asymptotic methods for partial differential equations: The reduced wave equation and Maxwell's equations, in "Surveys in Applied Mathematics, Vol.1" (eds. J. B. Keller, W. McLaughlin and G. C. Papanicolaou), Plenum, New York, (1995), 1-82. |
[11] |
W. L. Kruer, "The Physics of Laser-Plasma Interaction," Addison-Wesley, New York, 1988. |
[12] |
P. Loiseau, et al., Laser-beam smoothing induced by stimulated Brillouin scattering in an inhomogeneous plasma, Physical Review Letters, 97 (2006), 205001.
doi: 10.1103/PhysRevLett.97.205001. |
[13] |
G. Metivier and R. Sentis, On the Boyd-Kadomtsev System and its asymptotic limit, Comm. Math. Physics, to be published (2011). |
[14] |
Ph. Mounaix, D. Pesme and M. Casanova, Nonlinear reflectivity of an inhomogeneous plasma, Phys. Review E, 55 (1997), 4653.
doi: 10.1103/PhysRevE.55.4653. |
[15] |
S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ and V. E. Zakharov, "Theory of Solitons. The Inverse Scattering Method," Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984. |
[16] |
D. Pesme, Interaction collisionnelle et collective, in "La Fusion par Confinement Inertiel I. Interaction Laser-Matière" (ed. R. Dautray-Watteau), Eyrolles, Paris, 1995. |
[17] |
R. Sentis, On the Boyd-Kadomtsev system for the three-wave coupling problem, C. R. Math. Ac. Sciences Paris, 347 (2009), 933-938. |
[18] |
R. Sentis, Mathematical models for laser-plasma interaction, M2AN Math. Modelling Num. Analysis, 39 (2005), 275-318. |
show all references
References:
[1] |
Ph. Ballereau, M. Casanova, F. Duboc, D. Dureau, H. Jourdren, P. Loiseau, J. Metral, O. Morice and R. Sentis, Simulation of the paraxial laser propagation coupled with hydrodynamics in 3D geometry, J. Sci. Comp., 33 (2007), 1-24.
doi: 10.1007/s10915-007-9135-y. |
[2] |
P. G. Baines, The stability of planetary waves on a sphere, J. Fluid Mech., 73 (1976), 193-213.
doi: 10.1017/S0022112076001341. |
[3] |
T. J. M. Boyd and J. G. Turner, Lagrangian studies of plasma wave interaction, 5 (1972), 881-896. |
[4] |
M. Casanova, et al., Self-generated loss of coherency in Brillouin scattering and reduction of reflectivity, Phys. Review Letters, 54 (1985), 2230-2233.
doi: 10.1103/PhysRevLett.54.2230. |
[5] |
M. Colin and T. Colin, On a quasilinear Zakharov system describing laser-plasma interaction, Differential Integral Equations, 17 (2004), 297-330. |
[6] |
S. Desroziers, F. Nataf and R. Sentis, Simulation of laser propagation in a plasma with a frequency wave equation, J. Comp. Physics, 227 (2008), 2610-2625.
doi: 10.1016/j.jcp.2007.11.008. |
[7] |
M. Doumic, F. Duboc, F. Golse and R. Sentis, Simulation of laser beam propagation with a paraxial model in a tilted frame, J. Comp. Physics, 228 (2009), 861-880.
doi: 10.1016/j.jcp.2008.10.009. |
[8] |
L. Divol and R. L. Berger, et al., Three-dimensional modeling of laser-plasma interaction: Benchmarking our predictive modeling tools versus experiments, Phys. of Plasmas, 15 (2008), 056313. |
[9] |
B. B. Kadomtsev, "Plasma Turbulence," translated from the Russian, Academic Press, 1965. |
[10] |
J. B. Keller and R. M. Lewis, Asymptotic methods for partial differential equations: The reduced wave equation and Maxwell's equations, in "Surveys in Applied Mathematics, Vol.1" (eds. J. B. Keller, W. McLaughlin and G. C. Papanicolaou), Plenum, New York, (1995), 1-82. |
[11] |
W. L. Kruer, "The Physics of Laser-Plasma Interaction," Addison-Wesley, New York, 1988. |
[12] |
P. Loiseau, et al., Laser-beam smoothing induced by stimulated Brillouin scattering in an inhomogeneous plasma, Physical Review Letters, 97 (2006), 205001.
doi: 10.1103/PhysRevLett.97.205001. |
[13] |
G. Metivier and R. Sentis, On the Boyd-Kadomtsev System and its asymptotic limit, Comm. Math. Physics, to be published (2011). |
[14] |
Ph. Mounaix, D. Pesme and M. Casanova, Nonlinear reflectivity of an inhomogeneous plasma, Phys. Review E, 55 (1997), 4653.
doi: 10.1103/PhysRevE.55.4653. |
[15] |
S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ and V. E. Zakharov, "Theory of Solitons. The Inverse Scattering Method," Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984. |
[16] |
D. Pesme, Interaction collisionnelle et collective, in "La Fusion par Confinement Inertiel I. Interaction Laser-Matière" (ed. R. Dautray-Watteau), Eyrolles, Paris, 1995. |
[17] |
R. Sentis, On the Boyd-Kadomtsev system for the three-wave coupling problem, C. R. Math. Ac. Sciences Paris, 347 (2009), 933-938. |
[18] |
R. Sentis, Mathematical models for laser-plasma interaction, M2AN Math. Modelling Num. Analysis, 39 (2005), 275-318. |
[1] |
Ademir Pastor. On three-wave interaction Schrödinger systems with quadratic nonlinearities: Global well-posedness and standing waves. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2217-2242. doi: 10.3934/cpaa.2019100 |
[2] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3685-3701. doi: 10.3934/dcdss.2020466 |
[3] |
Oǧul Esen, Serkan Sütlü. Matched pair analysis of the Vlasov plasma. Journal of Geometric Mechanics, 2021, 13 (2) : 209-246. doi: 10.3934/jgm.2021011 |
[4] |
Kazuhiro Kurata, Yuki Osada. Asymptotic expansion of the ground state energy for nonlinear Schrödinger system with three wave interaction. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4239-4251. doi: 10.3934/cpaa.2021157 |
[5] |
Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1511-1547. doi: 10.3934/dcdsb.2021100 |
[6] |
Tian Ma, Shouhong Wang. Unified field equations coupling four forces and principle of interaction dynamics. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1103-1138. doi: 10.3934/dcds.2015.35.1103 |
[7] |
Baptiste Fedele, Claudia Negulescu. Numerical study of an anisotropic Vlasov equation arising in plasma physics. Kinetic and Related Models, 2018, 11 (6) : 1395-1426. doi: 10.3934/krm.2018055 |
[8] |
Elena Bonetti, Giovanna Bonfanti, Riccarda Rossi. Analysis of a model coupling volume and surface processes in thermoviscoelasticity. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2349-2403. doi: 10.3934/dcds.2015.35.2349 |
[9] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[10] |
Imen Manoubi. Theoretical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with Riemann-Liouville half derivative. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2837-2863. doi: 10.3934/dcdsb.2014.19.2837 |
[11] |
Jong-Shenq Guo, Hirokazu Ninomiya, Chin-Chin Wu. Existence of a rotating wave pattern in a disk for a wave front interaction model. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1049-1063. doi: 10.3934/cpaa.2013.12.1049 |
[12] |
Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633 |
[13] |
José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025 |
[14] |
Ting-Hui Yang, Weinian Zhang, Kaijen Cheng. Global dynamics of three species omnivory models with Lotka-Volterra interaction. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2867-2881. doi: 10.3934/dcdsb.2016077 |
[15] |
Christophe Chalons. Theoretical and numerical aspects of the interfacial coupling: The scalar Riemann problem and an application to multiphase flows. Networks and Heterogeneous Media, 2010, 5 (3) : 507-524. doi: 10.3934/nhm.2010.5.507 |
[16] |
Jing Zhang. The analyticity and exponential decay of a Stokes-wave coupling system with viscoelastic damping in the variational framework. Evolution Equations and Control Theory, 2017, 6 (1) : 135-154. doi: 10.3934/eect.2017008 |
[17] |
Avner Friedman, Bei Hu, Chuan Xue. A three dimensional model of wound healing: Analysis and computation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (8) : 2691-2712. doi: 10.3934/dcdsb.2012.17.2691 |
[18] |
Jorge A. Esquivel-Avila. Qualitative analysis of a nonlinear wave equation. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 787-804. doi: 10.3934/dcds.2004.10.787 |
[19] |
Hua Zhong, Xiao-Ping Wang, Shuyu Sun. A numerical study of three-dimensional droplets spreading on chemically patterned surfaces. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2905-2926. doi: 10.3934/dcdsb.2016079 |
[20] |
Djemaa Messaoudi, Osama Said Ahmed, Komivi Souley Agbodjan, Ting Cheng, Daijun Jiang. Numerical recovery of magnetic diffusivity in a three dimensional spherical dynamo equation. Inverse Problems and Imaging, 2020, 14 (5) : 797-818. doi: 10.3934/ipi.2020037 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]