\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Elliptic problems with $L^1$-data in the half-space

Abstract Related Papers Cited by
  • In this paper, we study the div-curl-grad operators and some elliptic problems in the half-space $\mathbb{R}^n_+$, with $n\geq 2$. We consider data in weighted Sobolev spaces and in $L^1$.
    Mathematics Subject Classification: 35J25, 35J47.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. A. Adams and J. J. Fournier, "Sobolev Spaces," Second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.

    [2]

    C. Amrouche, The Neumann problem in the half-space, Comptes Rendus de l'Académie des Sciences de Paris, 335 (2002), 151-156.

    [3]

    C. Amrouche, V. Girault and J. Giroire, Weighted Sobolev spaces for Laplace's equation in $\R^n$, Journal de Mathématiques Pures et Appliquées (9), 73 (1994), 579-606.

    [4]

    C. Amrouche, V. Girault and J. Giroire, Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator: An approach in weighted Sobolev spaces, Journal de Mathématiques Pures et Appliquées (9), 76 (1997), 55-81.doi: 10.1016/S0021-7824(97)89945-X.

    [5]

    C. Amrouche and Š. Nečasová, Laplace equation in the half-space with a nonhomogeneous Dirichlet boundary condition, Proceedings of Partial Differential Equations and Applications (Olomouc, 1999), Mathematica Bohemica, 126 (2001), 265-274.

    [6]

    C. Amrouche, Š. Nečasová and Y. Raudin, Very weak, generalized and strong solutions to the Stokes system in the half-space, Journal of Differential Equations, 244 (2008), 887-915.doi: 10.1016/j.jde.2007.10.007.

    [7]

    C. Amrouche, Š. Nečasová and Y. Raudin, From strong to very weak solutions to the Stokes system with Navier boundary conditions in the half-space, SIAM J. Math. Anal., 41 (2009), 1792-1815.doi: 10.1137/090749207.

    [8]

    J. Bourgain and H. Brezis, On the equation div $Y=f$ and application to control of phases, Journal of the American Mathematical Society, 16 (2003), 393-426.doi: 10.1090/S0894-0347-02-00411-3.

    [9]

    J. Bourgain and H. Brezis, New estimates for elliptic equations and Hodge type systems, Journal of the European Mathematical Society, 9 (2007), 277-315.doi: 10.4171/JEMS/80.

    [10]

    J. Bourgain and H. Brezis, Sur l'équation div $u=f$, Comptes Rendus de l'Académie des Sciences de Paris, 334 (2002), 973-976.

    [11]

    J. Bourgain and H. Brezis, New estimates for the Laplacian, the div-curl, and related Hodge systems, Comptes Rendus de l'Académie des Sciences de Paris, 338 (2004), 539-543.

    [12]

    H. Brezis and J. Van Schaftingen, Boundary extimates for elliptic systems with $\mathbfL^1$-data, Calculus of Variations and Partial Differential Equations, 30 (2007), 369-388.doi: 10.1007/s00526-007-0094-9.

    [13]

    J. Deny and J. L. LionsLes espaces du type de Beppo Levi, Annales de l'Institut Fourier, Grenoble, 5 (1953-54), 305-370. doi: 10.5802/aif.55.

    [14]

    V. Girault, The gradient, divergence, curl and Stokes operators in weighted Sobolev spaces of $\mathbbR^3$, Journal of the Faculty of Science, The University of Tokyo, Sect. IA Math., 39 (1992), 279-307.

    [15]

    B. Hanouzet, Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace, Rendiconti del Seminario Matematico della Université di Padova, 46 (1971), 227-272.

    [16]

    J. Van Schaftingen, Estimates for $L^1$-vector fields, Comptes Rendus de l'Académie des Sciences de Paris, 339 (2004), 181-186.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(122) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return