June  2012, 5(3): 399-417. doi: 10.3934/dcdss.2012.5.399

A variational convergence for bifunctionals. Application to a model of strong junction

1. 

IMATH, Université du Sud Toulon-Var, BP 20132 - 83957 La Garde Cedex, France

Received  August 2010 Revised  September 2010 Published  October 2011

We introduce a notion of variational convergence for bifunctionals in an abstract setting. Then we apply this convergence to the asymptotic analysis of a junction problem in order to capture the gradient oscillations in the joint by considering the energy functional as a bifunctional of Sobolev-function/Young measure arguments. The well known asymptotic model described in terms of Sobolev-functions is obtained by eliminating the Young-measure argument considered as an internal variable through a marginal map. Furthermore, the surface energy of the classical model can be considered as a relaxation of a Dirichlet condition.
Citation: Anne-Laure Bessoud. A variational convergence for bifunctionals. Application to a model of strong junction. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 399-417. doi: 10.3934/dcdss.2012.5.399
References:
[1]

E. Acerbi, G. Buttazzo and D. Percivale, Thin inclusions in linear elasticity: A variational approach, J. Reine Angew. Math., 386 (1988), 99-115. doi: 10.1515/crll.1988.386.99.

[2]

O. Anza Hafsa and J. P. Mandallena, Interchange of infimum and integral, Calc. Var. Partial Differential Equations, 18 (2003), 433-449.

[3]

H. Attouch, G. Buttazzo and G. Michaille, "Variational Analysis in Sobolev and BV Spaces. Application to PDEs and Optimization," MPS/SIAM Series on Optimization, 6, SIAM, MPS, Philadelphia, PA, 2006.

[4]

E. J. Balder, Lectures on Young measures theory and its applications in economics, Workshop di Teoria della Misura e Analisi Reale (Grado, 1997), Rend. Istit. Mat. Univ. Trieste, 31 (2000), 1-69.

[5]

J. M. Ball, A version of the fundamental theorem for Young measures, in "PDEs and Continuum Models of Phase Transitions" (Nice, 1988) (eds. M. Rascle, D. Serre and M. Slemrod) Lecture Notes in Physics, 344, Springer Verlag, Berlin, (1989), 207-215.

[6]

J. M. Ball and R. D. James, Fine phase mixtures as minimizers of energy, Arch. Rat. Mech. Anal., 100 (1987), 13-52. doi: 10.1007/BF00281246.

[7]

A. L. Bessoud, F. Krasucki and G. Michaille, Multi-materials with strong interface: Variational modelings, Asympto. Anal., 61 (2009), 1-19.

[8]

A. L. Bessoud, F. Krasucki and G. Michaille, A relaxation process for bifunctionals of displacement-Young measure state variables: A model of multi-material with micro-structured strong interface, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 447-469.

[9]

M. Bocea and I. Fonseca, A Young measure approach to a nonlinear membrane model involving the bending moment, Poc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 845-883. doi: 10.1017/S0308210500003516.

[10]

C. Castaing, P. Raynaud de Fitte and M. Valadier, "Young Measure on Topological Spaces. With Applications in Control Theory and Probability Theory," Mathematics and Its Applications, 571, Kluwer Academic Publisher, Dordrecht, 2004.

[11]

C. Castaing and M. Valadier, "Convex Analysis and Measurable Multifunctions," Lect. Notes Math., 580, Springer-Verlag, Berlin-New York, 1977.

[12]

B. Dacorogna, "Direct Methods in the Calculus of Variations," Appl. Math. Sciences, 78, Springer-Verlag, Berlin, 1989.

[13]

I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients, SIAM J. Math. Anal., 29 (1998), 736-756. doi: 10.1137/S0036141096306534.

[14]

D. Kinderlehrer and P. Pedregal, Characterization of Young measures generated by gradients, Arch. Rational Mech. Anal., 115 (1991), 329-365. doi: 10.1007/BF00375279.

[15]

E. Mascolo and L. Migliaccio, Relaxation methods in control theory, Appl. Math. Optim., 20 (1989), 97-103. doi: 10.1007/BF01447649.

[16]

C. Licht, G. Michaille and S. Pagano, A model of elastic adhesive bonded joints through oscillation-concentration measures, J. Math. Pures Appl. (9), 87 (2007), 343-365. doi: 10.1016/j.matpur.2007.01.008.

[17]

L. Tartar, $H$-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations, Proceedings of the Royal Society of Edinburgh Sect. A, 115 (1990), 193-230.

[18]

M. Valadier, Young measures, in "Methods of Nonconvex Analysis" (Varenna, 1989) (ed. A. Cellina), Lecture Notes in Math., 1446, Springer, Berlin, (1990), 152-188.

[19]

M. Valadier, A course on Young measures, Workshop di Teoria della Misura e Analisi Reale, (Grado, 1993), Rend. Istit. Mat. Univ. Trieste, 26 (1994), 349-394.

show all references

References:
[1]

E. Acerbi, G. Buttazzo and D. Percivale, Thin inclusions in linear elasticity: A variational approach, J. Reine Angew. Math., 386 (1988), 99-115. doi: 10.1515/crll.1988.386.99.

[2]

O. Anza Hafsa and J. P. Mandallena, Interchange of infimum and integral, Calc. Var. Partial Differential Equations, 18 (2003), 433-449.

[3]

H. Attouch, G. Buttazzo and G. Michaille, "Variational Analysis in Sobolev and BV Spaces. Application to PDEs and Optimization," MPS/SIAM Series on Optimization, 6, SIAM, MPS, Philadelphia, PA, 2006.

[4]

E. J. Balder, Lectures on Young measures theory and its applications in economics, Workshop di Teoria della Misura e Analisi Reale (Grado, 1997), Rend. Istit. Mat. Univ. Trieste, 31 (2000), 1-69.

[5]

J. M. Ball, A version of the fundamental theorem for Young measures, in "PDEs and Continuum Models of Phase Transitions" (Nice, 1988) (eds. M. Rascle, D. Serre and M. Slemrod) Lecture Notes in Physics, 344, Springer Verlag, Berlin, (1989), 207-215.

[6]

J. M. Ball and R. D. James, Fine phase mixtures as minimizers of energy, Arch. Rat. Mech. Anal., 100 (1987), 13-52. doi: 10.1007/BF00281246.

[7]

A. L. Bessoud, F. Krasucki and G. Michaille, Multi-materials with strong interface: Variational modelings, Asympto. Anal., 61 (2009), 1-19.

[8]

A. L. Bessoud, F. Krasucki and G. Michaille, A relaxation process for bifunctionals of displacement-Young measure state variables: A model of multi-material with micro-structured strong interface, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 447-469.

[9]

M. Bocea and I. Fonseca, A Young measure approach to a nonlinear membrane model involving the bending moment, Poc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 845-883. doi: 10.1017/S0308210500003516.

[10]

C. Castaing, P. Raynaud de Fitte and M. Valadier, "Young Measure on Topological Spaces. With Applications in Control Theory and Probability Theory," Mathematics and Its Applications, 571, Kluwer Academic Publisher, Dordrecht, 2004.

[11]

C. Castaing and M. Valadier, "Convex Analysis and Measurable Multifunctions," Lect. Notes Math., 580, Springer-Verlag, Berlin-New York, 1977.

[12]

B. Dacorogna, "Direct Methods in the Calculus of Variations," Appl. Math. Sciences, 78, Springer-Verlag, Berlin, 1989.

[13]

I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients, SIAM J. Math. Anal., 29 (1998), 736-756. doi: 10.1137/S0036141096306534.

[14]

D. Kinderlehrer and P. Pedregal, Characterization of Young measures generated by gradients, Arch. Rational Mech. Anal., 115 (1991), 329-365. doi: 10.1007/BF00375279.

[15]

E. Mascolo and L. Migliaccio, Relaxation methods in control theory, Appl. Math. Optim., 20 (1989), 97-103. doi: 10.1007/BF01447649.

[16]

C. Licht, G. Michaille and S. Pagano, A model of elastic adhesive bonded joints through oscillation-concentration measures, J. Math. Pures Appl. (9), 87 (2007), 343-365. doi: 10.1016/j.matpur.2007.01.008.

[17]

L. Tartar, $H$-measures, a new approach for studying homogenization, oscillations and concentration effects in partial differential equations, Proceedings of the Royal Society of Edinburgh Sect. A, 115 (1990), 193-230.

[18]

M. Valadier, Young measures, in "Methods of Nonconvex Analysis" (Varenna, 1989) (ed. A. Cellina), Lecture Notes in Math., 1446, Springer, Berlin, (1990), 152-188.

[19]

M. Valadier, A course on Young measures, Workshop di Teoria della Misura e Analisi Reale, (Grado, 1993), Rend. Istit. Mat. Univ. Trieste, 26 (1994), 349-394.

[1]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic two-scale convergence and Young measures. Networks and Heterogeneous Media, 2022, 17 (2) : 227-254. doi: 10.3934/nhm.2022004

[2]

Steffen Arnrich. Modelling phase transitions via Young measures. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 29-48. doi: 10.3934/dcdss.2012.5.29

[3]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Time-dependent systems of generalized Young measures. Networks and Heterogeneous Media, 2007, 2 (1) : 1-36. doi: 10.3934/nhm.2007.2.1

[4]

Wei Wang, Na Sun, Michael K. Ng. A variational gamma correction model for image contrast enhancement. Inverse Problems and Imaging, 2019, 13 (3) : 461-478. doi: 10.3934/ipi.2019023

[5]

Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355

[6]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[7]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[8]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[9]

Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2101-2116. doi: 10.3934/cpaa.2021059

[10]

Lorenza D'Elia. $ \Gamma $-convergence of quadratic functionals with non uniformly elliptic conductivity matrices. Networks and Heterogeneous Media, 2022, 17 (1) : 15-45. doi: 10.3934/nhm.2021022

[11]

Micol Amar, Andrea Braides. A characterization of variational convergence for segmentation problems. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 347-369. doi: 10.3934/dcds.1995.1.347

[12]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[13]

Harun Karsli, Purshottam Narain Agrawal. Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022002

[14]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Computational networks and systems-homogenization of self-adjoint differential operators in variational form on periodic networks and micro-architectured systems. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 139-169. doi: 10.3934/naco.2017010

[15]

Stefano Galatolo, Hugo Marsan. Quadratic response and speed of convergence of invariant measures in the zero-noise limit. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5303-5327. doi: 10.3934/dcds.2021078

[16]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 223-250. doi: 10.3934/naco.2017016

[17]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[18]

Stefano Luzzatto, Marks Ruziboev. Young towers for product systems. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1465-1491. doi: 10.3934/dcds.2016.36.1465

[19]

Alexis De Vos, Yvan Van Rentergem. Young subgroups for reversible computers. Advances in Mathematics of Communications, 2008, 2 (2) : 183-200. doi: 10.3934/amc.2008.2.183

[20]

Zhili Ge, Gang Qian, Deren Han. Global convergence of an inexact operator splitting method for monotone variational inequalities. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1013-1026. doi: 10.3934/jimo.2011.7.1013

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]