Citation: |
[1] |
D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math., 30 (1978), 33-76.doi: 10.1016/0001-8708(78)90130-5. |
[2] |
H. Brezis, L. A. Peletier and D. Terman, A very singular solution of the heat equation with absorption, Arch. Ration. Mech. Anal., 95 (1986), 185--209.doi: 10.1007/BF00251357. |
[3] |
J. Bricmont and A. Kupiainen, Stable non-Gaussian diffusive profiles, Nonlinear Anal., 26 (1996), 583-593.doi: 10.1016/0362-546X(94)00300-7. |
[4] |
J. Bricmont, A. Kupiainen and G. Lin, Renormalization group and asymptotics of solutions of nonlinear parabolic equations, Comm. Pure Appl. Math., 47 (1994), 893-922.doi: 10.1002/cpa.3160470606. |
[5] |
M. Cannone, Y. Meyer and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes, in "Séminaire sur les Équations aux Dérives Partielles," 1993-1994, Exp. No. VIII, 12 pp., École Polytech., Palaiseau, 1994. |
[6] |
J. A. Carrillo and J. L. Vázquez, Asymptotic complexity in filtration equations, J. Evol. Equ., 7 (2007), 471-495. |
[7] |
T. Cazenave, F. Dickstein, M. Escobedo and F. B. Weissler, Self-similar solutions of a nonlinear heat equation, J. Math. Sci. Univ. Tokyo, 8 (2001), 501-540. |
[8] |
T. Cazenave, F. Dickstein and F. B. Weissler, Universal solutions of the heat equation on $\R^N $, Discrete Contin. Dynam. Systems, 9 (2003), 1105-1132.doi: 10.3934/dcds.2003.9.1105. |
[9] |
T. Cazenave, F. Dickstein and F. B. Weissler, Universal solutions of the nonlinear heat equation on $\R^N $, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 2 (2003), 77-117. |
[10] |
T. Cazenave, F. Dickstein and F. B. Weissler, Chaotic behavior of solutions of the Navier-Stokes system in $\R^N $, Adv. Differential Equations, 10 (2005), 361-398. |
[11] |
T. Cazenave, F. Dickstein and F. B. Weissler, A solution of the heat equation with a continuum of decay rates, in "Elliptic and Parabolic Problems: A Special Tribute to the Work of Haïm Brezis," Progress in Nonlinear Differential Equations and their Applications, 63, Birkhäuser, Basel, (2005), 135-138. |
[12] |
T. Cazenave, F. Dickstein and F. B. Weissler, Multiscale asymptotic behavior of a solution of the heat equation in $\R^N $, in "Nonlinear Differential Equations: A Tribute to D. G. de Figueiredo," Progress in Nonlinear Differential Equations and their Applications, 66, Birkhäuser, Basel, (2006), 185-194. |
[13] |
T. Cazenave, F. Dickstein and F. B. Weissler, A solution of the constant coefficient heat equation on $\R$ with exceptional asymptotic behavior: An explicit constuction, J. Math. Pures Appl. (9), 85 (2006), 119-150.doi: 10.1016/j.matpur.2005.08.006. |
[14] |
T. Cazenave, F. Dickstein and F. B. Weissler, Nonparabolic asymptotic limits of solutions of the heat equation on $\R^N $, J. Dynam. Differential Equations, 19 (2007), 789-818.doi: 10.1007/s10884-007-9076-z. |
[15] |
T. Cazenave and F. B. Weissler, Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Math. Z., 228 (1998), 83-120.doi: 10.1007/PL00004606. |
[16] |
T. Cazenave and F. B. Weissler, Spatial decay and time-asymptotic profiles for solutions of Schrödinger equations, Indiana Univ. Math. J., 55 (2006), 75-118.doi: 10.1512/iumj.2006.55.2664. |
[17] |
R. L. Devaney, Overview: Dynamics of Simple Maps, in "Chaos and Fractals" (Providence, RI, 1988), 1-24, Proc. Symp. Appl. Math., 39, Amer. Math. Soc., Providence, RI, 1989. |
[18] |
C. Dohmen and M. Hirose, Structure of positive radial solutions to the Haraux-Weissler equation, Nonlinear Anal., 33 (1998), 51-69.doi: 10.1016/S0362-546X(97)00542-7. |
[19] |
H. Emamirad, G. R. Goldstein and J. A. Goldstein, Chaotic solution for the Black-Scholes equation, Proc. Amer. Math. Soc, S 0002-9939 (2011) 11069-4. |
[20] |
M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation, Nonlinear Anal., 11 (1987), 1103-1133.doi: 10.1016/0362-546X(87)90001-0. |
[21] |
M. Escobedo and O. Kavian, Asymptotic behavior of positive solutions of a nonlinear heat equation, Houston J. Math., 14 (1988), 39-50. |
[22] |
M. Escobedo, O. Kavian and H. Matano, Large time behavior of solutions of a dissipative semilinear heat equation, Comm. Partial Differential Equations, 20 (1995), 1427-1452. |
[23] |
D. Fang, J. Xie and T. Cazenave, Multiscale asymptotic behavior of the Schrödinger equation, Funk. Ekva., 54 (2011), 69-94.doi: 10.1619/fesi.54.69. |
[24] |
H. Fujita, On the blowing-up of solutions of the Cauchy problem for $u_t=\Delta u+u^{\alpha +1}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124. |
[25] |
M.-H. Giga, Y. Giga and J. Saal, "Nonlinear Partial Differential Equations. Asymptotic Behavior of Solutions and Self-Similar Solutions," Progr. Nonlinear Differential Equations Appl., 79, Birkhäuser Boston, Inc., Boston, MA, 2010. |
[26] |
Y. Giga and T. Miyakawa, Navier-Stokes flow in $R^3$ with measures as initial vorticity and Morrey spaces, Comm. Partial Differential Equations, 14 (1989), 577-618. |
[27] |
A. Gmira and L. Véron, Large time behaviour of the solutions of a semilinear parabolic equation in $\R^N $, J. Differential Equations, 53 (1984), 258-276.doi: 10.1016/0022-0396(84)90042-1. |
[28] |
A. Haraux and F. B. Weissler, Nonuniqueness for a semilinear initial value problem, Indiana Univ. Math. J., 31 (1982), 167-189.doi: 10.1512/iumj.1982.31.31016. |
[29] |
K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic equations, Proc. Japan Acad., 49 (1973), 503-505.doi: 10.3792/pja/1195519254. |
[30] |
L. Herraiz, Asymptotic behaviour of solutions of some semilinear parabolic problems, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 49-105. |
[31] |
S. Kamin and L. A. Peletier, Large time behavior of solutions of the heat equation with absorption, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12 (1985), 393-408. |
[32] |
O. Kavian, Remarks on the time behaviour of a nonlinear diffusion equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 423-452. |
[33] |
T. Kawanago, Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity, Ann. Inst. H. Poincaré Anal. Non Linéaire, 13 (1996), 1-15. |
[34] |
K. Kobayashi, T. Sirao and H. Tanaka, On the growing up problem for semilinear heat equations, J. Math. Soc. Japan, 29 (1977), 407-424.doi: 10.2969/jmsj/02930407. |
[35] |
M. Kwak, A semilinear heat equation with singular initial data, Proc. Royal Soc. Edinburgh Sect. A, 128 (1998), 745-758. |
[36] |
M. Marcus and L. Véron, Initial trace of positive solutions of some nonlinear parabolic equations, Comm. Partial Differential Equations, 24 (1999), 1445-1499. |
[37] |
F. Ribaud, "Analyse de Littlewood Paley pour la Résolution d'Équations Paraboliques Semi-Linéaires," Ph.D Thesis, University of Paris XI, January, 1996. |
[38] |
S. Snoussi, S. Tayachi and F. B. Weissler, Asymptotically self-similar global solutions of a semilinear parabolic equation with a nonlinear gradient term, Proc. Royal Soc. Edinburgh Sect. A, 129 (1999), 1291-1307. |
[39] |
S. Snoussi, S. Tayachi and F. B. Weissler, Asymptotically self-similar global solutions of a general semilinear heat equation, Math. Ann., 321 (2001), 131-155.doi: 10.1007/PL00004498. |
[40] |
J. L. Vázquez and E. Zuazua, Complexity of large time behaviour of evolution equations with bounded data, Chinese Ann. Math. Ser. B, 23 (2002), 293-310.doi: 10.1142/S0252959902000274. |
[41] |
C. E. Wayne, Invariant manifolds for parabolic partial differential equations on unbounded domains, Arch. Ration. Mech. Anal., 138 (1997), 279-306.doi: 10.1007/s002050050042. |
[42] |
F. B. Weissler, Existence and nonexistence of global solutions for a semilinear heat equation, Israel J. Math., 38 (1981), 29-40.doi: 10.1007/BF02761845. |
[43] |
F. B. Weissler, Rapidly decaying solutions of an ordinary differential equation with applications to semilinear elliptic and parabolic partial differential equations, Arch. Ration. Mech. Anal., 91 (1985), 247-266.doi: 10.1007/BF00250744. |
[44] |
F. B. Weissler, Asymptotic analysis of an ordinary differential equation and nonuniqueness for a semilinear partial differential equation, Arch. Ration. Mech. Anal., 91 (1985), 231-245.doi: 10.1007/BF00250743. |
[45] |
J. Xie, L. Zhang and T. Cazenave, A note on decay rates for Schrödinger's equation, Proc. Amer. Math. Soc., 138 (2010), 199-207.doi: 10.1090/S0002-9939-09-10049-7. |
[46] |
E. Yanagida, Uniqueness of rapidly decaying solutions to the Haraux-Weissler equation, J. Differential Equations, 127 (1996), 561-570.doi: 10.1006/jdeq.1996.0083. |