\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction

Abstract Related Papers Cited by
  • We consider reaction-diffusion systems which, in addition to certain slow reactions, contain a fast irreversible reaction in which chemical components A and B form a product P. In this situation and under natural assumptions on the RD-system we prove the convergence of weak solutions, as the reaction speed of the irreversible reaction tends to infinity, to a weak solution of a limiting system. The limiting system is a Stefan-type problem with a moving interface at which the chemical reaction front is localized.
    Mathematics Subject Classification: Primary: 35K57; Secondary: 35B25, 92E20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Amann, Global existence for semilinear parabolic problems, J. Reine Angew. Math., 360 (1985), 47-83.doi: 10.1515/crll.1985.360.47.

    [2]

    P. Baras and M. Pierre, Problèmes paraboliques semi-linéaires avec données mesures, (French, English summary), Applicable Analysis, 18 (1984), 111-149.doi: 10.1080/00036818408839514.

    [3]

    Ph. Bénilan, M. G. Crandall and A. Pazy, "Nonlinear Evolution Equations in Banach Spaces," preprint book.

    [4]

    M. Bisi, F. Confort and L. Desvillettes, Quasi-steady-state approximation for reaction-diffusion equations, Bull. Inst. Math., Acad. Sin. (N.S.), 2 (2007), 823-850.

    [5]

    D. Bothe, The instantaneous limit of a reaction-diffusion system, in "Evolution Equations and Their Applications in Physical and Life Sciences" (eds. G. Lumer, L. Weis), Marcel Dekker, Lect. Notes Pure Appl. Math., 215 (2000), 215-224.

    [6]

    D. Bothe, Instantaneous limits of reversible chemical reactions in presence of macroscopic convection, J. Differ. Equations, 193 (2003), 27-48.doi: 10.1016/S0022-0396(03)00148-7.

    [7]

    D. Bothe and D. Hilhorst, A reaction-diffusion system with fast reversible reaction, J. Math. Anal. Appl., 286 (2003), 125-135.doi: 10.1016/S0022-247X(03)00457-8.

    [8]

    D. Bothe, A. Lojewski and H.-J. Warnecke, Computational analysis of an instantaneous chemical reaction in a T-microreactor, AIChE J., 56 (2010), 1406-1415.

    [9]

    D. Bothe and M. Pierre, Quasi-steady-state approximation for a reaction-diffusion system with fast intermediate, J. Math. Anal. Appl., 368 (2010), 120-132.doi: 10.1016/j.jmaa.2010.02.044.

    [10]

    H. Brezis and W. A. Strauss, Semi-linear second-order elliptic equations in $L^1$, J. Math. Soc. Japan, 25 (1973), 565-590.doi: 10.2969/jmsj/02540565.

    [11]

    J. R. Cannon and C. D. Hill, On the movement of a chemical reaction interface, Indiana Univ. Math. J., 20 (1970), 429-453.doi: 10.1512/iumj.1970.20.20037.

    [12]

    J. R. Cannon and A. Fasano, Boundary value multidimensional problems in fast chemical reactions, Archive Rat. Mech. Anal., 53 (1973), 1-13.doi: 10.1007/BF00735697.

    [13]

    E. N. Dancer, D. Hilhorst, M. Mimura and L. A. Peletier, Spatial segregation limit of a competition-diffusion system, European J. Appl. Math., 10 (1999), 97-115.doi: 10.1017/S0956792598003660.

    [14]

    L. Desvillettes, K. Fellner, M. Pierre and J. Vovelle, About global existence for quadratic systems of reaction-diffusion, Advanced Nonlinear Studies, 7 (2007), 491-511.

    [15]

    P. Erdi and J. Toth, "Mathematical Models of Chemical Reactions," Manchester Univ. Press, Manchester 1989.

    [16]

    L. C. Evans, A convergence theorem for a chemical diffusion-reaction system, Houston J. Math., 6 (1980), 259-267.

    [17]

    D. Hilhorst, M. Mimura and H. Ninomiya, Fast reaction limit of competition-diffusion systems, in "Handbook of Differential Equations" (eds. C. M. Dafermos and M. Pokorny), Elsevier, Evolution Equations 5 (2009).

    [18]

    A. Lunardi, "Analytic Semigroups and Optimal Regularity in Parabolic Problems,'' Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser Verlag, Basel, 1995.

    [19]

    R. H. Martin and M. Pierre, Nonlinear reaction-diffusion systems, in "Nonlinear Equations in the Applied Sciences" (eds. W.F. Ames and C. Rogers), Acad. Press, New York, Math. Sci. Eng., 185 (1991).

    [20]

    M. Pierre, Weak solutions and supersolutions in $L^1$ for reaction-diffusion systems, J. Evol. Equ., 3 (2003), 153-168.doi: 10.1007/s000280300007.

    [21]

    M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM J. Math. Anal., 28 (1997), 259-269.doi: 10.1137/S0036141095295437.

    [22]

    M. Pierre and D. Schmitt, Blowup in reaction-diffusion systems with dissipation of mass, SIAM Rev., 42 (2000), 93-106 (electronic).doi: 10.1137/S0036144599359735.

    [23]

    Y. Tonegawa, On the regularity of a chemical reaction interface, Comm. PDEs, 23 (1998), 1181-1207.

    [24]

    J. L. Vazquez, "The Porous Medium Equation, Mathematical Theory," Clarendon-Press, Oxford University Press, Oxford, 2007.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(170) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return