\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A family of nonlinear diffusions connecting Perona-Malik to standard diffusion

Abstract Related Papers Cited by
  • A one parameter family of equations is considered which connects the well-known Perona-Malik equation to standard diffusion. The parameter acts as a regularization parameter which gradually modifies the ill-posed Perona-Malik equation, through a strongly locally well-posed equation, to a strongly globally well-posed one which exhibits a behavior akin to that of standard diffusion, which is itself obtained in the limit. In the locally well-posed regime, the equation is degenerate parabolic and the onset of singularities can not be ruled out. Using a classical regularization approach, a-priori estimates can be derived which allow to go to limit with the regularization parameter globally in time. It is, however, not clear how to obtain a proper definition of weak solution for the limiting equation of interest.
    Mathematics Subject Classification: 35A01, 35A02, 35A09, 35K65, 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions Pattern Anal. Machine Intelligence, 12 (1990), 161-192.

    [2]

    S. Kichenassamy, The Perona-Malik paradox, SIAM J. Appl. Math., 57 (1997), 1328-1342.doi: 10.1137/S003613999529558X.

    [3]

    B. Kawohl and N. Kutev, Maximum and comparison principle for one-dimensional anisotropic diffusion, Math. Ann., 311 (1998), 107-123.doi: 10.1007/s002080050179.

    [4]

    P. Guidotti, A new nonlocal nonlinear diffusion of image processing, Journal of Differential Equations, 246 (2009), 4731-4742.doi: 10.1016/j.jde.2009.03.017.

    [5]

    P. Guidotti, A new well-posed nonlinear nonlocal diffusion, Nonlinear Analysis, 72 (2010), 4625-4637.doi: 10.1016/j.na.2010.02.040.

    [6]

    M. Ghisi and M. Gobbino, An example of global transcritical solution for the Perona-Malik equation, Communications in Partial Differential Equations, 36 (2011), 1318-1352.doi: 10.1080/03605302.2010.542672.

    [7]

    F. Catté, P.-L. Lions, J.-M. Morel and T. Coll, Image selective smoothing and edge-detection by non-linear diffusion, SIAM J. Numer. Anal., 29 (1992), 182-193.

    [8]

    G.-H. Cottet and M. E. Ayyadi, A volterra type model for image processing, IEEE Trans. Image Processing, 7 (1998), 292-303.doi: 10.1109/83.661179.

    [9]

    F. Weber, On products on non-commuting sectorial operators, Annali della Scuola Normale Superiore di Pisa Cl. Sci. (4), 27 (1998), 499-531.

    [10]

    A. Belahmidi, "Equations aux Dérivées Partielles Appliquées à la Restoration et à l'Agrandissement des Images," Ph.D. Thesis, Université Paris-Dauphine, Paris, 2003.

    [11]

    A. Belahmidi and A. Chambolle, Time-delay regularization of anisotropic diffusion and image processing, M2AN Math. Model. Numer. Anal., 39 (2005), 231-251.

    [12]

    H. Amann, Time-delayed Perona-Malik problems, Acta Math. Univ. Comenianae (N.S.), 76 (2007), 15-38.

    [13]

    P. Guidotti and J. Lambers, Two new nonlinear nonlocal diffusions for noise reduction, Journal of Mathematical Imaging and Vision, 33 (2009), 25-37.doi: 10.1007/s10851-008-0108-z.

    [14]

    Y. You, W. Xu, A. Tannenbaum and M. Kaveh, Behavioral analysis of anisotropic diffusion in image processing, IEEE Transaction on Image Processing, 5 (1996), 1539-1553.

    [15]

    L. Grafakos, "Classical and Modern Fourier Analysis," Pearson Education, Inc., Upper Saddle River, NJ, 2004.

    [16]

    S. Taheri, Q. Tang and K. Zhang, Young measure solutions and instability of the one-dimensional Perona-Malik equation, J. Math. Anal. Appl., 308 (2005), 467-490.doi: 10.1016/j.jmaa.2004.11.034.

    [17]

    K. Zhang, Existence of infinitely many solutions for the one-dimensional Perona-Malik model, Calc. Var. Partial Differential Equations, 26 (2006), 171-199.

    [18]

    L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems," Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(74) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return