June  2012, 5(3): 591-604. doi: 10.3934/dcdss.2012.5.591

Rate-independent processes with linear growth energies and time-dependent boundary conditions

1. 

Institute of Information Theory and Automation of the ASCR, Pod vodárenskou věží 4, CZ-182 08 Praha 8, Czech Republic

2. 

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY

Received  August 2010 Revised  January 2011 Published  October 2011

A rate-independent evolution problem is considered for which the stored energy density depends on the gradient of the displacement. The stored energy density does not have to be quasiconvex and is assumed to exhibit linear growth at infinity; no further assumptions are made on the behaviour at infinity. We analyse an evolutionary process with positively $1$-homogeneous dissipation and time-dependent Dirichlet boundary conditions.
Citation: Martin Kružík, Johannes Zimmer. Rate-independent processes with linear growth energies and time-dependent boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 591-604. doi: 10.3934/dcdss.2012.5.591
References:
[1]

I. V. Chenchiah, M. O. Rieger and J. Zimmer, Gradient flows in asymmetric metric spaces, Nonlinear Anal., 71 (2009), 5820-5834. doi: 10.1016/j.na.2009.05.006.

[2]

S. Conti and M. Ortiz, Dislocation microstructures and the effective behavior of single crystals, Arch. Ration. Mech. Anal., 176 (2005), 103-147. doi: 10.1007/s00205-004-0353-2.

[3]

G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Ration. Mech. Anal., 176 (2005), 165-225. doi: 10.1007/s00205-004-0351-4.

[4]

R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys., 108 (1987), 667-689. doi: 10.1007/BF01214424.

[5]

G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies, J. Reine Angew. Math., 595 (2006), 55-91. doi: 10.1515/CRELLE.2006.044.

[6]

M. Kružík and T. Roubíček, On the measures of DiPerna and Majda, Math. Bohem., 122 (1997), 383-399.

[7]

M. Kružík and J. Zimmer, A model of shape memory alloys accounting for plasticity, IMA Journal of Applied Mathematics, 76 (2011), 193-216. doi: 10.1093/imamat/hxq058.

[8]

M. Kružík and J. Zimmer, Vanishing regularisation for gradient flows via $\Gamma$-limit,, in preparation., (). 

[9]

M. Kružík and J. Zimmer, Evolutionary problems in non-reflexive spaces, ESAIM Control Optim. Calc. Var., 16 (2010), 1-22.

[10]

A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strain, J. Nonlinear Sci., 19 (2009), 221-248. doi: 10.1007/s00332-008-9033-y.

[11]

A. Mielke and T. Roubíček, A rate-independent model for inelastic behavior of shape-memory alloys, Multiscale Model. Simul., 1 (2003), 571-597 (electronic). doi: 10.1137/S1540345903422860.

[12]

A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Ration. Mech. Anal., 162 (2002), 137-177. doi: 10.1007/s002050200194.

[13]

M. Ortiz and E. A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids, 47 (1999), 397-462. doi: 10.1016/S0022-5096(97)00096-3.

[14]

T. Roubíček, "Relaxation in Optimization Theory and Variational Calculus,'' de Gruyter Series in Nonlinear Analysis and Applications, 4, Walter de Gruyter & Co., Berlin, 1997.

[15]

J. Souček, Spaces of functions on domain $\Omega $, whose $k$-th derivatives are measures defined on $\bar \Omega $, Časopis Pĕst. Mat., 97 (1972), 10-46, 94.

[16]

D. W. Stroock and S. R. S. Varadhan, "Multidimensional Diffusion Processes,'' Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 233, Springer-Verlag, Berlin-New York, 1979.

show all references

References:
[1]

I. V. Chenchiah, M. O. Rieger and J. Zimmer, Gradient flows in asymmetric metric spaces, Nonlinear Anal., 71 (2009), 5820-5834. doi: 10.1016/j.na.2009.05.006.

[2]

S. Conti and M. Ortiz, Dislocation microstructures and the effective behavior of single crystals, Arch. Ration. Mech. Anal., 176 (2005), 103-147. doi: 10.1007/s00205-004-0353-2.

[3]

G. Dal Maso, G. A. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity, Arch. Ration. Mech. Anal., 176 (2005), 165-225. doi: 10.1007/s00205-004-0351-4.

[4]

R. J. DiPerna and A. J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys., 108 (1987), 667-689. doi: 10.1007/BF01214424.

[5]

G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies, J. Reine Angew. Math., 595 (2006), 55-91. doi: 10.1515/CRELLE.2006.044.

[6]

M. Kružík and T. Roubíček, On the measures of DiPerna and Majda, Math. Bohem., 122 (1997), 383-399.

[7]

M. Kružík and J. Zimmer, A model of shape memory alloys accounting for plasticity, IMA Journal of Applied Mathematics, 76 (2011), 193-216. doi: 10.1093/imamat/hxq058.

[8]

M. Kružík and J. Zimmer, Vanishing regularisation for gradient flows via $\Gamma$-limit,, in preparation., (). 

[9]

M. Kružík and J. Zimmer, Evolutionary problems in non-reflexive spaces, ESAIM Control Optim. Calc. Var., 16 (2010), 1-22.

[10]

A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strain, J. Nonlinear Sci., 19 (2009), 221-248. doi: 10.1007/s00332-008-9033-y.

[11]

A. Mielke and T. Roubíček, A rate-independent model for inelastic behavior of shape-memory alloys, Multiscale Model. Simul., 1 (2003), 571-597 (electronic). doi: 10.1137/S1540345903422860.

[12]

A. Mielke, F. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Ration. Mech. Anal., 162 (2002), 137-177. doi: 10.1007/s002050200194.

[13]

M. Ortiz and E. A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals, J. Mech. Phys. Solids, 47 (1999), 397-462. doi: 10.1016/S0022-5096(97)00096-3.

[14]

T. Roubíček, "Relaxation in Optimization Theory and Variational Calculus,'' de Gruyter Series in Nonlinear Analysis and Applications, 4, Walter de Gruyter & Co., Berlin, 1997.

[15]

J. Souček, Spaces of functions on domain $\Omega $, whose $k$-th derivatives are measures defined on $\bar \Omega $, Časopis Pĕst. Mat., 97 (1972), 10-46, 94.

[16]

D. W. Stroock and S. R. S. Varadhan, "Multidimensional Diffusion Processes,'' Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 233, Springer-Verlag, Berlin-New York, 1979.

[1]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[2]

Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076

[3]

Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070

[4]

Gianni Dal Maso, Alexander Mielke, Ulisse Stefanelli. Preface: Rate-independent evolutions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : i-ii. doi: 10.3934/dcdss.2013.6.1i

[5]

T. J. Sullivan, M. Koslowski, F. Theil, Michael Ortiz. Thermalization of rate-independent processes by entropic regularization. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 215-233. doi: 10.3934/dcdss.2013.6.215

[6]

Augusto Visintin. Structural stability of rate-independent nonpotential flows. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 257-275. doi: 10.3934/dcdss.2013.6.257

[7]

Boumedièene Chentouf, Sabeur Mansouri. Boundary stabilization of a flexible structure with dynamic boundary conditions via one time-dependent delayed boundary control. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1127-1141. doi: 10.3934/dcdss.2021090

[8]

Nicola Guglielmi, László Hatvani. On small oscillations of mechanical systems with time-dependent kinetic and potential energy. Discrete and Continuous Dynamical Systems, 2008, 20 (4) : 911-926. doi: 10.3934/dcds.2008.20.911

[9]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic and Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[10]

Daniele Davino, Ciro Visone. Rate-independent memory in magneto-elastic materials. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : 649-691. doi: 10.3934/dcdss.2015.8.649

[11]

Alexander Mielke, Riccarda Rossi, Giuseppe Savaré. Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 585-615. doi: 10.3934/dcds.2009.25.585

[12]

Michela Eleuteri, Luca Lussardi, Ulisse Stefanelli. A rate-independent model for permanent inelastic effects in shape memory materials. Networks and Heterogeneous Media, 2011, 6 (1) : 145-165. doi: 10.3934/nhm.2011.6.145

[13]

Stefano Bosia, Michela Eleuteri, Elisabetta Rocca, Enrico Valdinoci. Preface: Special issue on rate-independent evolutions and hysteresis modelling. Discrete and Continuous Dynamical Systems - S, 2015, 8 (4) : i-i. doi: 10.3934/dcdss.2015.8.4i

[14]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Periodic solutions for time-dependent subdifferential evolution inclusions. Evolution Equations and Control Theory, 2017, 6 (2) : 277-297. doi: 10.3934/eect.2017015

[15]

Eduard Marušić-Paloka, Igor Pažanin. Reaction of the fluid flow on time-dependent boundary perturbation. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1227-1246. doi: 10.3934/cpaa.2019059

[16]

Hedy Attouch, Alexandre Cabot, Zaki Chbani, Hassan Riahi. Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient. Evolution Equations and Control Theory, 2018, 7 (3) : 353-371. doi: 10.3934/eect.2018018

[17]

Luca Minotti. Visco-Energetic solutions to one-dimensional rate-independent problems. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5883-5912. doi: 10.3934/dcds.2017256

[18]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[19]

Alice Fiaschi. Rate-independent phase transitions in elastic materials: A Young-measure approach. Networks and Heterogeneous Media, 2010, 5 (2) : 257-298. doi: 10.3934/nhm.2010.5.257

[20]

Michela Eleuteri, Luca Lussardi. Thermal control of a rate-independent model for permanent inelastic effects in shape memory materials. Evolution Equations and Control Theory, 2014, 3 (3) : 411-427. doi: 10.3934/eect.2014.3.411

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]