-
Previous Article
Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero
- DCDS-S Home
- This Issue
-
Next Article
The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction
Hopf dances near the tips of Busse balloons
1. | Mathematisch Instituut, Universiteit Leiden, P.O. Box 9512, 2300 RA Leiden, Netherlands |
2. | Centrum Wiskunde en Informatica (CWI), Science Park 123, 1098 XG Amsterdam, Netherlands |
3. | Korteweg-de Vries Instituut, Science Park 904, 1098 XH Amsterdam, Netherlands |
References:
[1] |
I. Aranson and L. Kramer, The world of the Ginzburg-Landau equation, Rev. Modern Phys., 74 (2002), 99-143.
doi: 10.1103/RevModPhys.74.99. |
[2] |
F. H. Busse, Nonlinear properties of thermal convection, Rep. Prog. Phys., 41 (1978), 1929-1967.
doi: 10.1088/0034-4885/41/12/003. |
[3] |
R. L. Devaney, Reversible diffeomorphisms and flows, Trans. Am. Math. Soc., 218 (1976), 89-113.
doi: 10.1090/S0002-9947-1976-0402815-3. |
[4] |
E. J. Doedel. AUTO-07P:, Continuation and bifurcation software for ordinary differential equations,, \url{http://cmvl.cs.concordia.ca/auto}., ().
|
[5] |
A. Doelman, An explicit theory for pulses in two component singularly perturbed reaction-diffusion equations,, in preparation., ().
|
[6] |
A. Doelman and W. Eckhaus, Periodic and quasi-periodic solutions of degenerate modulation equations, Physica D, 53 (1991), 249-266.
doi: 10.1016/0167-2789(91)90065-H. |
[7] |
A. Doelman, R. A. Gardner and T. J. Kaper, Stability analysis of singular patterns in the 1-D Gray-Scott model: A matched asymptotics approach, Physica D, 122 (1998), 1-36.
doi: 10.1016/S0167-2789(98)00180-8. |
[8] |
A. Doelman, R. A. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations, Ind. Univ. Math. J., 50 (2001), 443-507.
doi: 10.1512/iumj.2001.50.1873. |
[9] |
A. Doelman, R. A. Gardner and T. J. Kaper, A stability index analysis of 1-D patterns of the Gray-Scott model, Memoirs AMS, 155 (2002), (737). |
[10] |
A. Doelman, T. J Kaper and H. van der Ploeg, Spatially periodic and aperiodic multi-pulse patterns in the one-dimensional Gierer-Meinhardt equation, Meth. Appl. An., 8 (2001), 387-414. |
[11] |
A. Doelman, T. J. Kaper and P. Zegeling, Pattern formation in the one-dimensional Gray-Scott model, Nonlinearity, 10 (1997), 523-563.
doi: 10.1088/0951-7715/10/2/013. |
[12] |
A. Doelman and H. van der Ploeg, Homoclinic stripe patterns, SIAM J. Appl. Dyn. Syst., 1 (2002), 65-104.
doi: 10.1137/S1111111101392831. |
[13] |
A. Doelman, B. Sandstede, A. Scheel and G. Schneider, The dynamics of modulated wave trains, Memoirs of the AMS, 199 (2009). |
[14] |
W. Eckhaus and G. Iooss, Strong selection or rejection of spatially periodic patterns in degenerate bifurcations, Physica D, 39 (1989), 124-146.
doi: 10.1016/0167-2789(89)90043-2. |
[15] |
E. G. Eszter, "Evans Function Analysis of the Stability of Periodic Traveling Wave Solutions of the Fitzhugh-Nagumo System," PhD thesis, U. of Massachusetts in Amherst, 1999. |
[16] |
R. A. Gardner, On the structure of the spectra of periodic travelling waves, J. Math. Pure Appl., 72 (1993), 415-439. |
[17] |
R. A. Gardner, Spectral analysis of long wavelength periodic waves and applications, J. Reine Angew. Math., 491 (1997), 149-181.
doi: 10.1515/crll.1997.491.149. |
[18] |
D. Iron and M. J. Ward, The dynamics of multi-spike solutions to the one-dimensional Gierer-Meinhardt model, SIAM J. Appl. Math., 62 (2002), 1924-1951.
doi: 10.1137/S0036139901393676. |
[19] |
D. Iron, M. J. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Physica D, 150 (2001), 25-62.
doi: i:10.1016/S0167-2789(00)00206-2. |
[20] |
T. Kolokolnikov, M. Ward and J. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: The pulse-splitting regime, Physica D, 202 (2005), 258-293.
doi: 10.1016/j.physd.2005.02.009. |
[21] |
T. Kolokolnikov, M. J. Ward and J. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: The low feed-rate regime, Stud. Appl. Math., 115 (2005), 21-71.
doi: i:10.1111/j.1467-9590.2005.01554. |
[22] |
B. J. Matkowsky and V. A. Volpert, Stability of plane wave solutions of complex Ginzburg-Landau equations, Quart. Appl. Math., 51 (1993), 265-281. |
[23] |
A. Mielke, The Ginzburg-Landau equation in its role as modulation equation, in "Handbook of Dynamical Systems, II'' (ed. B. Fiedler), Elsevier, (2002), pp. 759-835.
doi: 10.1016/S1874-575X(02)80036-4. |
[24] |
D. S. Morgan, A. Doelman and T. J. Kaper, Stationary periodic patterns in the 1D Gray-Scott model, Meth. Appl. Anal., 7 (2002), 105-150. |
[25] |
C. B. Muratov and V. V. Osipov, Traveling spike autosolitons in the Gray-Scott model, Physica D, 155 (2001), 112-131.
doi: 10.1016/S0167-2789(01)00259-7. |
[26] |
C. Muratov and V. V. Osipov, Stability of the static spike autosolitons in the Gray-Scott model, SIAM J. Appl. Math., 62 (2002), 1463-1487.
doi: 10.1137/S0036139901384285. |
[27] |
Y. Nishiura and D. Ueyama, A skeleton structure for self-replication dynamics, Physica D, 130 (1999), 73-104.
doi: 10.1016/S0167-2789(99)00010-X. |
[28] |
Y. Nishiura and D. Ueyama, Spatio-temporal chaos for the Gray-Scott model, Physica D, 150 (2001), 137-162.
doi: 10.1016/S0167-2789(00)00214-1. |
[29] |
W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices AMS, 45 (1998), 9-18. |
[30] |
M. Oh and K. Zumbrun, Stability of periodic solutions of conservation laws with viscosity: Analysis of the Evans function, Arch. Rational Mech. Anal., 166 (2003), 99-166.
doi: 10.1007/s00205-002-0216-7. |
[31] |
J. E. Pearson, Complex patterns in a simple system, Science, 261 (1993), 189-192.
doi: 10.1126/science.261.5118.189. |
[32] |
H. van der Ploeg and A. Doelman, Stability of spatially periodic pulse patterns in a class of singularly perturbed reaction-diffusion equations, Indiana Univ. Math. J., 54 (2005), 1219-1301.
doi: 10.1512/iumj.2005.54.2792. |
[33] |
V. Petrov, S. K. Scott and K. Showalter, Excitability, wave reflection, and wave splitting in a cubic autocatalysis reaction-diffusion system, Phil. Trans. Roy. Soc. Lond., Series A, 347 (1994), 631-642.
doi: 10.1098/rsta.1994.0071. |
[34] |
J. D. M. Rademacher, B. Sandstede and A. Scheel, Computing absolute and essential spectra using continuation, Physica D, 229 (2007), 166-183.
doi: 10.1016/j.physd.2007.03.016. |
[35] |
J. D. M. Rademacher and A. Scheel, Instabilities of wave trains and Turing patterns in large domains, Int. J. Bif. Chaos, 17 (2007), 2679-2691.
doi: 10.1142/S0218127407018683. |
[36] |
J. D. M. Rademacher and A. Scheel, The saddle-node of nearly homogeneous wave trains in reaction-diffusion systems, J. Dyn. Diff. Eq., 19 (2007), 479-496.
doi: 10.1007/s10884-006-9059-5. |
[37] |
W. N. Reynolds, J. E. Pearson and S. Ponce-Dawson, Dynamics of self-replicating patterns in reaction diffusion systems, Phys. Rev. Lett., 72 (1994), 2797-2800.
doi: 10.1103/PhysRevLett.72.2797. |
[38] |
B. Sandstede, Stability of travelling waves, in "Handbook of Dynamical Systems, II" (ed. B. Fiedler), Elsevier, (2002), 983-1055.
doi: 10.1016/S1874-575X(02)80039-X. |
[39] |
B. Sandstede and A. Scheel, Absolute and convective instabilities of waves on unbounded and large dounded domains, Physica D, 145 (2000), 233-277.
doi: 10.1016/S0167-2789(00)00114-7. |
[40] |
B. Sandstede and A. Scheel, On the stability of periodic travelling waves with large spatial period, J. Diff. Eq., 172 (2001), 134-188.
doi: 10.1006/jdeq.2000.3855. |
[41] |
A. Shepeleva, On the validity of the degenerate Ginzburg-Landau equation, Math. Methods Appl. Sci., 20 (1997), 1239-1256.
doi: 10.1002/(SICI)1099-1476(19970925)20:14<1239::AID-MMA917>3.0.CO;2-O. |
[42] |
A. Shepeleva, Modulated modulations approach to the loss of stability of periodic solutions for the degenerate Ginzburg-Landau equation, Nonlinearity, 11 (1998), 409-429.
doi: 10.1088/0951-7715/11/3/002. |
[43] |
M. J. Smith and J. A. Sherratt, The effects of unequal diffusion coefficients on periodic travelling waves in oscillatory reaction-diffusion systems, Physica D, 236 (2007), 90-103.
doi: 10.1016/j.physd.2007.07.013. |
[44] |
M. J. Ward and J. Wei, Hopf bifurcations and oscillatory instabilities of spike solutions for the one-dimensional Gierer-Meinhardt model, J. Nonl. Sc., 13 (2003), 209-264.
doi: 10.1007/s00332-002-0531-z. |
[45] |
J. Wei and M. Winter, Existence and stability of multiple-spot solutions for the Gray-Scott model in $\RR^2$, Physica D, 176 (2003), 147-180.
doi: 10.1016/S0167-2789(02)00743-1. |
[46] |
J. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math. Pures Appl. (9), 83 (2004), 433-476.
doi: 10.1016/j.matpur.2003.09.006. |
show all references
References:
[1] |
I. Aranson and L. Kramer, The world of the Ginzburg-Landau equation, Rev. Modern Phys., 74 (2002), 99-143.
doi: 10.1103/RevModPhys.74.99. |
[2] |
F. H. Busse, Nonlinear properties of thermal convection, Rep. Prog. Phys., 41 (1978), 1929-1967.
doi: 10.1088/0034-4885/41/12/003. |
[3] |
R. L. Devaney, Reversible diffeomorphisms and flows, Trans. Am. Math. Soc., 218 (1976), 89-113.
doi: 10.1090/S0002-9947-1976-0402815-3. |
[4] |
E. J. Doedel. AUTO-07P:, Continuation and bifurcation software for ordinary differential equations,, \url{http://cmvl.cs.concordia.ca/auto}., ().
|
[5] |
A. Doelman, An explicit theory for pulses in two component singularly perturbed reaction-diffusion equations,, in preparation., ().
|
[6] |
A. Doelman and W. Eckhaus, Periodic and quasi-periodic solutions of degenerate modulation equations, Physica D, 53 (1991), 249-266.
doi: 10.1016/0167-2789(91)90065-H. |
[7] |
A. Doelman, R. A. Gardner and T. J. Kaper, Stability analysis of singular patterns in the 1-D Gray-Scott model: A matched asymptotics approach, Physica D, 122 (1998), 1-36.
doi: 10.1016/S0167-2789(98)00180-8. |
[8] |
A. Doelman, R. A. Gardner and T. J. Kaper, Large stable pulse solutions in reaction-diffusion equations, Ind. Univ. Math. J., 50 (2001), 443-507.
doi: 10.1512/iumj.2001.50.1873. |
[9] |
A. Doelman, R. A. Gardner and T. J. Kaper, A stability index analysis of 1-D patterns of the Gray-Scott model, Memoirs AMS, 155 (2002), (737). |
[10] |
A. Doelman, T. J Kaper and H. van der Ploeg, Spatially periodic and aperiodic multi-pulse patterns in the one-dimensional Gierer-Meinhardt equation, Meth. Appl. An., 8 (2001), 387-414. |
[11] |
A. Doelman, T. J. Kaper and P. Zegeling, Pattern formation in the one-dimensional Gray-Scott model, Nonlinearity, 10 (1997), 523-563.
doi: 10.1088/0951-7715/10/2/013. |
[12] |
A. Doelman and H. van der Ploeg, Homoclinic stripe patterns, SIAM J. Appl. Dyn. Syst., 1 (2002), 65-104.
doi: 10.1137/S1111111101392831. |
[13] |
A. Doelman, B. Sandstede, A. Scheel and G. Schneider, The dynamics of modulated wave trains, Memoirs of the AMS, 199 (2009). |
[14] |
W. Eckhaus and G. Iooss, Strong selection or rejection of spatially periodic patterns in degenerate bifurcations, Physica D, 39 (1989), 124-146.
doi: 10.1016/0167-2789(89)90043-2. |
[15] |
E. G. Eszter, "Evans Function Analysis of the Stability of Periodic Traveling Wave Solutions of the Fitzhugh-Nagumo System," PhD thesis, U. of Massachusetts in Amherst, 1999. |
[16] |
R. A. Gardner, On the structure of the spectra of periodic travelling waves, J. Math. Pure Appl., 72 (1993), 415-439. |
[17] |
R. A. Gardner, Spectral analysis of long wavelength periodic waves and applications, J. Reine Angew. Math., 491 (1997), 149-181.
doi: 10.1515/crll.1997.491.149. |
[18] |
D. Iron and M. J. Ward, The dynamics of multi-spike solutions to the one-dimensional Gierer-Meinhardt model, SIAM J. Appl. Math., 62 (2002), 1924-1951.
doi: 10.1137/S0036139901393676. |
[19] |
D. Iron, M. J. Ward and J. Wei, The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Physica D, 150 (2001), 25-62.
doi: i:10.1016/S0167-2789(00)00206-2. |
[20] |
T. Kolokolnikov, M. Ward and J. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: The pulse-splitting regime, Physica D, 202 (2005), 258-293.
doi: 10.1016/j.physd.2005.02.009. |
[21] |
T. Kolokolnikov, M. J. Ward and J. Wei, The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: The low feed-rate regime, Stud. Appl. Math., 115 (2005), 21-71.
doi: i:10.1111/j.1467-9590.2005.01554. |
[22] |
B. J. Matkowsky and V. A. Volpert, Stability of plane wave solutions of complex Ginzburg-Landau equations, Quart. Appl. Math., 51 (1993), 265-281. |
[23] |
A. Mielke, The Ginzburg-Landau equation in its role as modulation equation, in "Handbook of Dynamical Systems, II'' (ed. B. Fiedler), Elsevier, (2002), pp. 759-835.
doi: 10.1016/S1874-575X(02)80036-4. |
[24] |
D. S. Morgan, A. Doelman and T. J. Kaper, Stationary periodic patterns in the 1D Gray-Scott model, Meth. Appl. Anal., 7 (2002), 105-150. |
[25] |
C. B. Muratov and V. V. Osipov, Traveling spike autosolitons in the Gray-Scott model, Physica D, 155 (2001), 112-131.
doi: 10.1016/S0167-2789(01)00259-7. |
[26] |
C. Muratov and V. V. Osipov, Stability of the static spike autosolitons in the Gray-Scott model, SIAM J. Appl. Math., 62 (2002), 1463-1487.
doi: 10.1137/S0036139901384285. |
[27] |
Y. Nishiura and D. Ueyama, A skeleton structure for self-replication dynamics, Physica D, 130 (1999), 73-104.
doi: 10.1016/S0167-2789(99)00010-X. |
[28] |
Y. Nishiura and D. Ueyama, Spatio-temporal chaos for the Gray-Scott model, Physica D, 150 (2001), 137-162.
doi: 10.1016/S0167-2789(00)00214-1. |
[29] |
W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states, Notices AMS, 45 (1998), 9-18. |
[30] |
M. Oh and K. Zumbrun, Stability of periodic solutions of conservation laws with viscosity: Analysis of the Evans function, Arch. Rational Mech. Anal., 166 (2003), 99-166.
doi: 10.1007/s00205-002-0216-7. |
[31] |
J. E. Pearson, Complex patterns in a simple system, Science, 261 (1993), 189-192.
doi: 10.1126/science.261.5118.189. |
[32] |
H. van der Ploeg and A. Doelman, Stability of spatially periodic pulse patterns in a class of singularly perturbed reaction-diffusion equations, Indiana Univ. Math. J., 54 (2005), 1219-1301.
doi: 10.1512/iumj.2005.54.2792. |
[33] |
V. Petrov, S. K. Scott and K. Showalter, Excitability, wave reflection, and wave splitting in a cubic autocatalysis reaction-diffusion system, Phil. Trans. Roy. Soc. Lond., Series A, 347 (1994), 631-642.
doi: 10.1098/rsta.1994.0071. |
[34] |
J. D. M. Rademacher, B. Sandstede and A. Scheel, Computing absolute and essential spectra using continuation, Physica D, 229 (2007), 166-183.
doi: 10.1016/j.physd.2007.03.016. |
[35] |
J. D. M. Rademacher and A. Scheel, Instabilities of wave trains and Turing patterns in large domains, Int. J. Bif. Chaos, 17 (2007), 2679-2691.
doi: 10.1142/S0218127407018683. |
[36] |
J. D. M. Rademacher and A. Scheel, The saddle-node of nearly homogeneous wave trains in reaction-diffusion systems, J. Dyn. Diff. Eq., 19 (2007), 479-496.
doi: 10.1007/s10884-006-9059-5. |
[37] |
W. N. Reynolds, J. E. Pearson and S. Ponce-Dawson, Dynamics of self-replicating patterns in reaction diffusion systems, Phys. Rev. Lett., 72 (1994), 2797-2800.
doi: 10.1103/PhysRevLett.72.2797. |
[38] |
B. Sandstede, Stability of travelling waves, in "Handbook of Dynamical Systems, II" (ed. B. Fiedler), Elsevier, (2002), 983-1055.
doi: 10.1016/S1874-575X(02)80039-X. |
[39] |
B. Sandstede and A. Scheel, Absolute and convective instabilities of waves on unbounded and large dounded domains, Physica D, 145 (2000), 233-277.
doi: 10.1016/S0167-2789(00)00114-7. |
[40] |
B. Sandstede and A. Scheel, On the stability of periodic travelling waves with large spatial period, J. Diff. Eq., 172 (2001), 134-188.
doi: 10.1006/jdeq.2000.3855. |
[41] |
A. Shepeleva, On the validity of the degenerate Ginzburg-Landau equation, Math. Methods Appl. Sci., 20 (1997), 1239-1256.
doi: 10.1002/(SICI)1099-1476(19970925)20:14<1239::AID-MMA917>3.0.CO;2-O. |
[42] |
A. Shepeleva, Modulated modulations approach to the loss of stability of periodic solutions for the degenerate Ginzburg-Landau equation, Nonlinearity, 11 (1998), 409-429.
doi: 10.1088/0951-7715/11/3/002. |
[43] |
M. J. Smith and J. A. Sherratt, The effects of unequal diffusion coefficients on periodic travelling waves in oscillatory reaction-diffusion systems, Physica D, 236 (2007), 90-103.
doi: 10.1016/j.physd.2007.07.013. |
[44] |
M. J. Ward and J. Wei, Hopf bifurcations and oscillatory instabilities of spike solutions for the one-dimensional Gierer-Meinhardt model, J. Nonl. Sc., 13 (2003), 209-264.
doi: 10.1007/s00332-002-0531-z. |
[45] |
J. Wei and M. Winter, Existence and stability of multiple-spot solutions for the Gray-Scott model in $\RR^2$, Physica D, 176 (2003), 147-180.
doi: 10.1016/S0167-2789(02)00743-1. |
[46] |
J. Wei and M. Winter, Existence and stability analysis of asymmetric patterns for the Gierer-Meinhardt system, J. Math. Pures Appl. (9), 83 (2004), 433-476.
doi: 10.1016/j.matpur.2003.09.006. |
[1] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[2] |
Bedr'Eddine Ainseba, Mostafa Bendahmane, Yuan He. Stability of conductivities in an inverse problem in the reaction-diffusion system in electrocardiology. Networks and Heterogeneous Media, 2015, 10 (2) : 369-385. doi: 10.3934/nhm.2015.10.369 |
[3] |
Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515 |
[4] |
Rebecca McKay, Theodore Kolokolnikov. Stability transitions and dynamics of mesa patterns near the shadow limit of reaction-diffusion systems in one space dimension. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 191-220. doi: 10.3934/dcdsb.2012.17.191 |
[5] |
Sheng-Chen Fu, Je-Chiang Tsai. Stability of travelling waves of a reaction-diffusion system for the acidic nitrate-ferroin reaction. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4041-4069. doi: 10.3934/dcds.2013.33.4041 |
[6] |
Danielle Hilhorst, Hideki Murakawa. Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium. Networks and Heterogeneous Media, 2014, 9 (4) : 669-682. doi: 10.3934/nhm.2014.9.669 |
[7] |
Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 49-59. doi: 10.3934/dcdss.2012.5.49 |
[8] |
Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control and Related Fields, 2022, 12 (1) : 147-168. doi: 10.3934/mcrf.2021005 |
[9] |
Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure and Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229 |
[10] |
Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631 |
[11] |
Yansu Ji, Jianwei Shen, Xiaochen Mao. Pattern formation of Brusselator in the reaction-diffusion system. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022103 |
[12] |
Shuang Liu, Xinfeng Liu. Krylov implicit integration factor method for a class of stiff reaction-diffusion systems with moving boundaries. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 141-159. doi: 10.3934/dcdsb.2019176 |
[13] |
Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245 |
[14] |
Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493 |
[15] |
Ming Mei. Stability of traveling wavefronts for time-delayed reaction-diffusion equations. Conference Publications, 2009, 2009 (Special) : 526-535. doi: 10.3934/proc.2009.2009.526 |
[16] |
Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875 |
[17] |
Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001 |
[18] |
Bo Duan, Zhengce Zhang. A two-species weak competition system of reaction-diffusion-advection with double free boundaries. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 801-829. doi: 10.3934/dcdsb.2018208 |
[19] |
Xiaojie Hou, Wei Feng. Traveling waves and their stability in a coupled reaction diffusion system. Communications on Pure and Applied Analysis, 2011, 10 (1) : 141-160. doi: 10.3934/cpaa.2011.10.141 |
[20] |
Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]